
D. D. Chamberlin
M. M. Astrahan
K. P. Eswaran
P. P. Griffiths
R. A. Lorie
J. W. Mehl
P. Reisner
B. W. Wade

SEQUEL 2: A Unified Approach to Data Definition,
Manipulation, and Control

Abstract: SEQUEL z is a relational data language that provides a consistent, English keyword-oriented set of facilities for query, data
definition, data manipulation, and data control. SEQUEL z may be used either as a stand-alone interface for nonspecialists in data process-
ing or as a data sublanguage embedded in a host programming language for use by application programmers and data base administrators.
This paper describes SEQUEL z and the means by which it is coupled to a host language.

Introduction
Since the introduction of the relational model of data
by Codd as a tool for general data base management
[13, there have been proposed several relational data
languages intended for inexperienced users. One such
language is SEQUEL, the Structured English Query Lan-
guage [2], which is based on English keywords and in-
tended for use by nonspecialists in data processing as
well as by professional programmers. Other well known
languages with a similar orientation include QUEL [3] ,
Query By Example 141, and SQUARE [51.

A series of human factors tests was conducted in
which the query facilities of SEQUEL were taught to uni-
versity undergraduates with and without programming
experience [6, 71. These tests isolated several features
of the language that were sources of learning difficulty.
As a result, several changes were made in the query fa-
cilities of the language.

In addition SEQUEL has been extended in several
ways. A data manipulation facility has been added that
permits insertion, deletion, and update of individual tu-
ples or sets of tuples in a relational data base. A data
definition facility allows definition of relations and of
various alternative views of relations. A data control fa-
cility enables each user to authorize other users to ac-
cess his data. The data control facility also provides for
assertions about data integrity and for stored transac-
tions triggered by various events. In addition, facilities
have been added to SEQUEL to permit coupling with a

560 high level host programming language, such as PL/I.

D. D. CHAMBERLIN, ET AL

The result of these extensions and improvements is
SEQUEL 2 , which is described in this paper. SEQUEL 2

may be thought of as a language consisting of several
‘‘layers’’ of increasing complexity. The most casual user
may learn only the simplest query features; more thor-
oughly trained users are provided more powerful fea-
tures, including some facilities normally reserved for a
data base administrator. All features are based on a con-
sistent keyword-oriented syntax.

SEQUEL 2 is the main external interface to be support-
ed by System R, an experimental relational data base
management system now under development [81. Sys-
tem R will make SEQUEL 2 available both as a stand-
alone, display-oriented interface and as a data sublan-
guage embedded in P L ~ .

SEQUEL 2 operates on relations in first (or higher)
normal form, as described by Codd [1, 91. The language
is described here by a series of examples based on the
data base of Fig. 1. The EMP relation describes a set of
employees, giving the employee number, name, depart-
ment number, job title, manager’s employee number,
salary, and commission for each employee. The DEPT re-
lation gives the department number, name, and location of
each department. The USAGE relation describes the parts
used by the various departments. The SUPPLY relation
describes the supplier companies from which the various
parts may be obtained. SEQUEL 2 refers to relations by
the more familiar term ruble. In this paper, the terms
“relation” and “table” are used interchangeably.

1BM J. RES. DEVELOP.

The following sections introduce the facilities of SE-

QUEL 2 for query, data manipulation, data definition,
data control, and host language coupling. Where neces-
sary, reference is made to specific features of System R;
however, SEQUEL 2 is adaptable with minor modifica-
tions to run on other relational systems. A complete
BNF syntax for SEQUEL 2 is given in the Appendix.
SEQUEL 2 accepts statements in free format; the ar-
rangement of lines and indentation in the following ex-
amples is used for clarity only.

Query facilities
The most basic operation of the SEQUEL language, called
a mapping, is illustrated by Q 1 below. Mapping suggests
that a known quantity (DNO = 50) is to be transformed
into a desired quantity (NAME) by means of a relation
(EMP). The SELECT clause lists the attributes to be re-
turned-if the entire tuple is desired, one may write SE-

LECT *. The WHERE clause may contain any collection of
predicates that compare attributes of tuples to values
(e.g., DNO = 50) or compare two attributes of a tuple
with each other (e.g., SAL < C O M M) . The predicates
may be connected by AND and OR, and parentheses may
be used to establish precedence.

Q1. Find the names of employees in Dept. 50.

SELECT NAME

FROM EMP

WHERE DNO = 5 0

In general, a mapping returns a collection of values-
the selected attributes of the tuples that satisfy the
WHERE clause. Duplicate values are not eliminated from
the returned set unless the user so requests by writing
SELECT UNIQUE. We decided on this convention because
the elimination of duplicate values is an expensive oper-
ation that we felt should not be provided by default. Q2
illustrates “projection” of the EMP relation on the DNO

attribute.

Q2. List all the different department numbers in the
EMP table.

SELECT UNIQUE DNO

FROM EMP

A predicate in a WHERE clause may test an attribute for
inclusion in a set, as illustrated by Q3, which also shows
the syntax for representing a set of constants.

Q3. List names of employees in Depts. 25, 47, and 53.

SELECT NAME

FROM EMP

WHERE DNO IN (25,47,53)

NOVEMBER 1976

EMP EMPNO I NAME I DNO I JOB I MGR I SAL I COMM

DEPT I DNO 1 DNAME 1 LOC I

USAGF I DNO I PART I

SUPPLY 1 SUPPLIER I PART 1
Figure 1 Example data base.

It is possible to use the result of a mapping in the
WHERE clause of another mapping. This operation,
called nested mapping, is illustrated by Q4. The inner
mapping returns the collection of DNO values of depart-
ments located in Evanston. The outer mapping then pro-
ceeds as though it were given a set of constants in place
of the inner mapping. Mappings may be nested to any
number of levels. The comparison operator = may be
used in place of IN without changing the meaning of the
query (this may seem more natural to a user when the
inner mapping returns a single value).

Q4. Find names of employees who work for departments
in Evanston.

SELECT NAME
FROM EMP

WHERE DNO IN

SELECT DNO
FROM DEPT

WHERE LOC = ‘EVANSTON’

SEQUEL 2 requires single quotation marks around all
character-string constants, in order to distinguish them
from attribute names (e.g., NAME = JOB and NAME =

‘JOB’ are both valid predicates but with different mean-
ings). Quotation marks are optional on numeric con-
stants (e.g., SAL = 10000 and SAL = ‘10000’ are equiva-
lent).

The result of a query is returned in system-determined
order unless the user requests an ordering, as shown in
Q5. The user may specify major and minor sorting attri-
butes, and he may specify ascending or descending or-
der. Ordering of character string attributes uses lexico-
graphic order.

Q5. List the employee number, name, and salary of
employees in Dept. 50, in order of employee
number. 561

SEQUEL 2

SELECT EMPNO,NAME,SAL
FROM EMP
WHERE DNO = S O

ORDER BY EMPNO

SEQUEL 2 provides several built-in functions that may
be used in the SELECT clause, as illustrated in Q6. The
functions provided include AVG, SUM, COUNT, MAX, and
MIN. System R allows a user to add additional functions
to the system by placing routines in a special function
library.

Q6. Find the average salary of clerks.

SELECT AVG(SAL)
FROM EMP
WHERE JOB = ‘CLERK’

The notation COUNT (*) denotes the count of tuples that
satisfy the WHERE clause.

In general duplicates are not eliminated from the set
of qualifying values before the built-in function is ap-
plied. However, the user may explicitly call for elimina-
tion of duplicates by placing the word UNIQUE inside the
argument of the function, as shown in Q7.

Q7. How many different jobs are held by employees in
Dept. 50?

SELECT COUNT(UN1QlJE JOB)
FROM EMP
WHERE DNO = S O

In addition to simple attributes and built-in functions,
a user may construct arithmetic expressions in the SE-
LECT clause. All the following are valid expressions:

(AVG(SAL) / 52

AVG(SAL) + AVG(C0MM)
AVG(SAL f COMM)

A relation may be partitioned into groups according to
the values of some attribute and then a built-in function
applied to each group. This type of query is illustrated
by Q8. A GROUP BY clause is always used together with
a built-in function. When a GROUP BY clause is used,
each item in the SELECT clause must be a unique proper-
ty of a group rather than of an individual tuple. For
example, in Q8 each group of employees has a unique
DNO and a unique average salary. If EMPNO were added
to the SELECT clause of Q 8 , an error would result, since
EMPNO is not a unique property of each group.

Q8. List all the departments and the average salary of
each.

SELECT DNO,AVG(SAL)
FROM EMP

562 GROUP BY DNO

A relation may be partitioned into groups and then a
predicate or set of predicates applied to choose only cer-
tain of the groups and disqualify others. These group-
qualifying predicates are always based on built-in func-
tions and are placed in a special HAVING clause, as
shown in Q9. A predicate in a HAVING clause may com-
pare an aggregate property of the group to a constant
(e&, AVG(SAL) < ~ 0 0 0 0) or to another aggregate prop-
erty of the same group (e.g., AVG(SAL) <= AVG
(COMM).)

Q9. List those departments in which the average em-
ployee salary is less than 10000.

SELECT DNO

FROM EMP
GROUP BY DNO
HAVING AVG(SAL) < 10000

When a query has both a WHERE clause and a HAVING
clause, their precedence is as follows: First the WHERE
clause is applied to qualify tuples; then the groups are
formed; then the HAVING clause is applied to qualify
groups, as shown by Q l O .

QlO. List the departments that employ more than ten
clerks.

SELECT DNO
FROM EMP
WHERE JOB = ‘CLERK’
GROUP BY DNO

HAVING COUNT(*) > 10

A special built-in function called SET is provided that
evaluates to the set of values for a particular attribute
which is present in a given group. This set of attributes
may then be compared with another set as part of the
HAVING clause. In Q 1 1, the inner mapping returns the
set of all job titles in the EMP table (with duplicates).
The outer mapping groups employees by department
number and then chooses those groups whose set of job
titles is equal to the set of all job titles. In this case, the
= operator is used in the sense of comparison of two
sets. Other set comparison operators are l=, [IS] [NOT]
IN, CONTAINS, and DOES NOT CONTAIN. All these set
comparison operators eliminate duplicates from both of
their operands before performing the comparison.

Q1 1. List the departments that have employees with
every possible job title.

SELECT DNO
FROM EMP
GROUP BY DNO
HAVING SET(J0B) =

SELECT JOB
FROM EMP

D. D. CHAMBERLIN, ET AL. IBM I. RES. DEVELOP.

The set-theoretic operators INTERSECT, UNION, and
MINUS are also available in SEQUEL 2. They may be used
to combine the results of two mappings, as shown in
Q12. A query may contain several set theoretic opera-
tors, with parentheses used as needed to resolve ambigu-
ities. Like the set comparison operators listed above,
INTERSECT, UNION, and MINUS automatically eliminate
duplicates from their operands before performing their
function.

Q12. List the departments that have no employees.

SELECT DNO
FROM DEPT

MINUS
SELECT DNO

FROM EMP

A query may return values selected from more than one
relation. An example is a jo in operation, as illustrated by
Q13. The user may list several relations in the FROM
clause. Conceptually, the Cartesian product of these re-
lations is formed and then filtered by the predicates in
the WHERE clause. (Of course, a well designed system
would avoid actual formation of the Cartesian product
but achieve the same effect by a more efficient means.)
When more than one relation is named in the FROM
clause, the user must be careful to properly qualify each
attribute name in the SELECT and WHERE clauses (e.g.,
to distinguish EMP.DNO from DEPT.DNO). When an attri-
bute name occurs in only one of the participating rela-
tions, it need not be qualified (e.g., Q 13 could have
specified simply SELECT NAME,LOC).

Q13. List the names of all employees and the locations
of their departments.

SELECT EMP,NAME,DEPT,LOC
FROM EMP,DEPT
WHERE EMP,DNO = DEPT,DNO

In some types of queries it is necessary to join a rela-
tion with itself according to some criterion. This may be
done by listing the relation name more than once in the
FROM clause, as in Q14. In such a query, the user may
invent an arbitrary label to be associated with each of
the participating relations (in this example, x and Y were
chosen as labels). The labels may then be used in place
of the relation name for qualifying references in the SE-
LECT and FROM clauses.
Q14. For each employee whose salary exceeds his

manager’s salary, list the employee’s name and his
manager’s name.

SELECT X,NAME,Y,NAME
FROM EMP X, EMP Y
WHERE X,MGR = Y,EMPNO
AND X,SAL > Y,SAL

The SEQUEL 2 language also permits a label to be used
to qualify attribute names outside the mapping block in
which the label is defined. For example, Q l 5 searches
for those tuples X of the SUPPLY relation such that the
set of parts supplied by the supplier in tuple x (comput-
ed by the first nested mapping) contains the set of parts
used by Dept. 50 (computed by the second nested map-
ping) .

QlS. List the suppliers that supply all the parts used
by Dept. 50.

SELECT SUPPLIER
FROM SUPPLY x
WHERE

(SELECT PART
FROM SUPPLY
WHERE SUPPLIER = X,SUPPLIER)

CONTAINS
(SELECT PART
FROM USAGE
WHERE DNO = 50)

We designed SEQUEL 2 so that whenever a variable
occurs outside the block in which it is defined, it may be
brought inside the block (and often eliminated entirely)
by means of GROUP BY and the special function SET. For
example, Q 16 is an equivalent restatement of Q IS.

Q16. (Same as Ql5 .)
SELECT SUPPLIER
FROM SUPPLY
GROUP BY SUPPLIER
HAVING SET(PART) CONTAINS

SELECT PART

FROM USAGE
WHERE DNO = 50

The notation for a set of constants was shown in Q3.
A constant tuple is denoted as in the following example:

(‘CLERK’JO)

A set of constant tuples may be represented as follows:

((‘CLERK’,SO), (‘CLERK’,52), (‘PROGRAMMER’,52))

The brackets () may also be used to denote a subtuple
of attributes selected from a tuple in the data base, as in
Q17:

Q 17. List the names of employees who have the same
job and salary as Smith.

SELECT NAME
FROM EMP

WHERE (JOB,SAL) =
SELECT JOB,SAL
FROM EMP
WHERE NAME = ‘SMITH’ 563

SEQUEL 2 NOVEMBER 1 976

F F F
? ? F ? ? T ? ?

X = ? T ?

Figure 2 Truth tables for three-valued logic.

SEQUEL 2 allows for the existence of unknown, or
null, values in the data base. The null value may be re-
ferred to by the keyword NULL. Null values are ignored
in the computation of all built-in functions except COUNT
(e.g., null salaries do not participate in computing
AVCXSAL)).

In determining whether a given tuple satisfies the
WHERE clause of a query, predicates that test attributes
for which the tuple has a null value are assigned the
unknown truth value (denoted ?) . The truth value of the
entire WHERE clause is then computed using three-val-
ued logic to evaluate ANDS and ORS (see Fig. 2) . The
tuple is considered to satisfy the WHERE clause if the
overall truth value of the clause is TRUE but not if the
overall truth value is FALSE or ?. For example, a tuple
having a DNO of 50 and a null salary would satisfy Q 18
but not Q19.

Q l8 . SELECT *
FROM EMP
WHERE DNO = 50
OR SAL>IS000

Q19. SELECT *
FROM EMP
WHERE DNO = 50
AND SAL>l5000

An exception to the above rules is made in the case of
predicates that search for null values explicitly, e.g.,
WHERE SAL = NULL. In these predicates, the null value
is treated like any other value.

Data manipulation facilities
Data manipulation facilities enable a user to change val-
ues directly in the data base. These facilities fall into the
categories of insertion, deletion, update, and assignment.

fied by the insertion statement are given null values. If
the tuple to be inserted has all its attributes present, in
the correct order, the list of attribute names may be
omitted.

M1. Insert a new employee named “Jones” with em-
ployee number 535 in Dept. 51, having other at-
tributes null.

INSERT INTO EMP(EMPNO,NAME,DNO);
(S3S,’JONES’,Sl)

A SEQUEL insertion statement may also evaluate a
query and insert the resulting set of tuples into some
existing relation. Suppose the data base contains a rela-
tion called CANDIDATES, which has columns for em-
ployee number, name, department number, and salary.
Then M2 could be used to select a set of values from the
EMP relation and insert them into CANDIDATES.

M2. Add to the CANDIDATES table all those employees
whose commission is greater than half their salary.
INSERT INTO CANDIDATES:

SELECT EMPNO,NAME,DNO,SAL
FROM EMP
WHERE COMM > 0.5 * SAL

Deletion is a process of specifying tuples to be re-
moved from the data base. The tuples are specified by
means of a WHERE clause that is syntactically identical
to the WHERE clause of a query, as shown in M3:

M3. Delete from EMP the employee with employee num-
ber 561.

DELETE EMP
WHERE EMPNO = 561

It may sometimes be useful to invent a label for the
tuples to be deleted and then to use the label to define
the properties of the tuples. This is similar to the use of
labels in the query facilities of the language. Deletion by
use of a label is illustrated by M4:

M4. Delete all the departments having no employees
from the DEPT table.

DELETE DEPT X
WHERE

(SELECT COUNT(“)
FROM EMP
WHERE DNO = X,DNO) = 0

The update features of SEQUEL 2 are similar to those
for deletion, except that an additional SET clause is used
to specify the updates to be made to the selected tuples.

The insertion facility allows the user to insert a new New values for updated attributes may be stated as con-
tuple or set of tuples into a relation. Insertion of a single stants, as nested queries, or as expressions based on the

564 tuple is illustrated by M1. Attributes that are not speci- original value of the attributes, as in MS. As in the case

D. D. CHAMBERLIN, ET AL. IBM J. RES. DEVELOP.

of deletion, a label may be placed in the UPDATE clause
and used in nested queries in the SET clause or WHERE

clause.

M5. Update the EMP table by giving a ten percent raise
to all those employees whose employee number
appears in the CANDIDATES table.

UPDATE EMP
SET SAL = SAL*1.1

WHERE EMPNO IN
SELECT EMPNO
FROM CANDIDATES

Newly inserted or updated tuples are not checked for
duplication of an existing tuple, since SEQUEL permits
duplicate tuples to exist unless the user has specified
otherwise. In the System R version of SEQUEL, duplicate
tuples may be prohibited by means of a “unique image”
(explained in the section on Data Definition).

An assignment statement creates a new relation in the
data base and copies into it the result of a query. This
new relation may then be queried, updated, or processed
in the same way as any other relation. The assignment
statement specifies the new relation name and column
names. If the column names of the new relation are
unambiguously determined by the SELECT clause of the
query, they may be omitted. Assignment is illustrated
by M6.

M6. Create a new relation called MANAGERS (with
suitable column names), and place in it the em-
ployee number, name, department number, and
salary of all employees who are managers.

ASSIGN TO MANAGERS

(EMPNO,NAME,DEPT,SALARY):
SELECT EMPNO,NAME,DNO,SAL
FROM EMP
WHERE EMPNO IN

SELECT MGR
FROM EMP

The new relation created by an assignment statement
is independent of the relation (s) from which it was de-
rived. After M6 is executed, adding a new manager to
the EMP table does not affect the MANAGERS relation, and
updating MANAGERS does not affect EMP.

Data definition facilities
Data definition facilities enable users to create and drop
relations, define alternative views of relations, and speci-
fy the access aids (indexes, etc.) to be maintained on
the data base. The data definition facilities of a language
describe the data structures provided by the system on
which the language runs. In this section we describe the

data definition statements of SEQUEL 2 in the context of
System R. Suitable modifications could be made to
adapt the language to other relational systems.

Example D l is a statement that creates a new relation
(table) to be physically stored in the system. System R
permits tables to be created and dropped dynamically.
The user specifies the table name and the column names
and data types. If null values are not to be permitted in a
particular column (e.g., DNO in the example), the user
may so state. The data types supported by System R are
shown in the syntax in the Appendix.
D 1. (This is the statement that might have been used

to create the DEPT table.)

CREATE TABLE DEPT

(DNO(CHAR(2),NONULL),
DNAME(CHAR(12) VAR),

LOC(CHAR(20) VAR))

In SEQUEL 2, the name of a table may be qualified by
the name of the user who created it, if necessary. For
example, if users Smith and Jones each create a table
named EMP, Smith can refer to his own table by EMP, or
to Jones’ table (if he is so authorized) by JONES,EMP. A
user may also define a synonym, or alternate name, for a
table, as shown in D2. This technique permits references
to a table created by another user without repeating the
creator’s name with every reference.
D2. Define JEMP as a synonym for the EMP table created

by Jones.

DEFINE SYNONYM JEMP AS JONES.EMP

The access aids supported by System R are called
images and links [8]. An image is an index on one or
more attributes of a relation, maintained in the form of a
B-tree [lo]. At most one image on a relation may have
the clustering property, which means that tuples that are
near each other in the ordering of that image are stored
physically near each other in the data base. An image
may also be declared unique, which means that the in-
dexed attribute must be a key of its relation, i.e., no two
tuples may have the same value for this attribute. A link
is a set of pointers that connect the tuples of one relation
to the tuples of another relation which match according
to a certain attribute. A link may have the clustering
property, in which case the system tries to maintain
physical contiguity of the tuples on the link. Examples of
statements to create images and links are shown in D3
and D4. Each image or link is given a name (I3 and L5
in the examples), which enables the user to refer to it
(e.g., in a DROP statement).

D3. Create an image called I3 on the SAL attribute of
the EMP table.

CREATE IMAGE 13 ON EMP(SAL)

NOVEMBER 1976

D4. Create a link called L5 which connects rows of
DEPT to those rows of EMP that match in the DNO

attribute. Order the employees on the link by JOB
and secondarily by SAL.

CREATE LINK L5
FROM DEPT(DN0)
TO EMP(DN0)

ORDER BY JOB,SAL

Although SEQUEL 2 allows the user to create and de-
stroy structures such as images and links, it has no state-
ments that use these structures directly. All queries and
data manipulation statements in SEQUEL are stated in a
nonprocedural way, which enables the system to choose
the optimal image or other access path to execute the
statement. Images and links contain no information that
is not derivable from the actual data values in the tuples
involved.

A very important aspect of data definition is the abili-
ty to define alternative views of stored data. In SEQUEL

2, the process of defining a view is very similar to the
process of stating a query. This is because SEQUEL 2
has the property of closure: the result of any query on
one or more tables is itself a table. Therefore, any query
formulation may be used as a definition of a view. The
DEFINE VIEW statement gives a name to the view and to
its columns. (If the column names can be derived unam-
biguously from the query that defines the view, they may
be omitted.) After definition of a view, the view may be
used in the same ways that a stored table may be used:
queries may be issued against it, other views may be
defined in terms of it, and, subject to certain limitations
[111, it may be updated. Unlike the assignment state-
ment described earlier, a view is a dynamic window on
the data base. Changes made to the underlying relations
are visible via the view. In general, updates may be
made via a view only if each tuple of the view is asso-
ciated with exactly one tuple of a stored relation. This
permits updates to tuples of the view to be implemented
by updates to the corresponding stored tuples.

One important application for views is to permit a
user to access only a certain part of a relation. For ex-
ample, if a user is entitled to read only the employee
number, name, and job of employees in Dept. 50, he
might be given the view shown in D5.

D5. Define a view called D50 containing the employee
number, name, and job of those employees in Dept.
50.

DEFINE VIEW D50 AS
SELECT EMPNO,NAME,JOB

FROM EMP

566 WHERE DNO = 50

Views are also useful for providing statistical summa-
ries of data. For example, a view based on query Q8
would provide the average salary of each department
without disclosing any individual salary. A view may be
defined using the keyword USER, which is always inter-
preted as the user-id of the current user. In this way, for
example, we might define a view that allows each user to
see only the employees in his own department.

A view need not be derived from a single underlying
table. For example, D6 defines a view as a join of two
tables, by means of a query similar to Q13. Example D6
also shows how a query may be issued against a view
just as though it were a stored relation. In defining a join
view such as the one in D6, users should beware of the
“connection trap” described by Codd [11. In terms of
D6, the facts that employee x works for department Y
and department Y is in location z do not necessarily im-
ply that employee x is in location Z .

D6. Define a view called PROGS consisting of the names
and salaries of all programmers and the locations
of their departments.

DEFINE VIEW PROGS
(NAME,SALARY ,HOMEBASE) AS

SELECT EMP.NAME,EMP.SAL,DEPT,LOC
FROM EMP.DEPT
WHERE EMP.DN0 = DEPT.DN0
AND EMPJOB = ‘PROGRAMMER’

Using the above view, find the average salary of
programmers in Denver.

SELECT AVG(SAL)
FROM PROGS
WHERE HOMEBASE = ‘DENVER’

Occasionally it may be necessary to expand an exist-
ing table by adding a new column to it, e.g., to accommo-
date a new application. SEQUEL 2 allows columns to be
added to the right side of existing tables by the EXPAND
statement, which gives the name and data type of the
new column. Existing tuples are considered to have null
values in the new column until they are updated. Quer-
ies and views that were written in terms of the existing
table are not affected by the expansion (except for those
queries that SELECT * from the table).

D7. Add a new column called NEMPS, of integer type, to
the table DEPT.

EXPAND TABLE DEPT

ADD COLUMN NEMPSUNTEGER)

When they are no longer needed, tables, views, im-
ages, and links may be dropped from the system by a
DROP command, as in D8.

D. D. CHAMBERLIN, ET AL. IBM J . RES, DEVELOP.

D8. Drop the view D50.

DROP VIEW D5O

A table or other object may be dropped only by the
user who created it. For this reason, many installations
will have one or more special user-ids which represent,
not actual persons, but the “role” of data base administra-
tor (DBA) for various portions of the data base. Thus
the user id representing the role of DBA for a certain de-
partment may serve to create, control, and destroy the
tables used in common by that department. Meanwhile,
individual users may use their own user-ids to create
tables for their own private use.

System R automatically maintains catalogs that de-
scribe all the tables, views, images, links, assertions, and
triggers (see next section) that are known to the system.
These catalogs are kept in the form of tables, which may
be queried in the same way as any other table. Each cat-
alog entry has space for a comment, which may be filled
in by the creator of the relevant object, using the COM-
MENT statement:

D9. (Illustrates the use of comments.)

COMMENT ON THE VIEW D50:
‘LIMITED VIEW OF EMPLOYEES IN DEPT, 50’

Data control facilities
Data control facilities enable users to control access to
their data by other users and to exercise control over the
integrity of data values. Facilities are also provided to
group several statements into a “transaction,” and to
back out updates that have been made to the data base.

Since SEQUEL permits any user to create new relations
and views, it is the responsibility of each user to control
access to the data objects he creates. When a user cre-
ates a relation or view, he is fully and solely authorized
to perform actions upon it. (If the object is a view, his
authorization is limited to the authorizations that he
holds on the supporting relations.) A user may grant
access to his relation or view to other users by means of
the SEQUEL command GRANT. The following privileges
may be granted:

READ
INSERT
DELETE
UPDATE (by column)
EXPAND
IMAGE (to define images on the relation)
LINK (to create links on the relation)
CONTROL (to make assertions or define triggers per-
taining to the relation-see explanation below)

(An additional privilege called RUN, which applies t i
programs rather than to relations, is explained in the sec-
tion on host language coupling.)

In addition, the grantor may permit the grantee to
grant the listed privileges to other users by including the
clause WITH GRANT OPTION. If a user does not have the
grant option for a privilege, he may exercise that privi-
lege, but he may not grant the privilege to other users.

C 1. Give the following privileges on the EMP table to
Smith and Anderson: Ability to read, to insert, to
update the JOB and DNO columns and to grant these
abilities to others.

GRANT READ,INSERT,UPDATE(JOB,DNO) ON EMP
TO SMITH,ANDERSON WITH GRANT OPTION

The keyword PUBLIC may be used in place of the list of
users to whom a privilege is to be granted, if it is to be
granted to all users. The phrase ALL RIGHTS may be used
in place of the list of privileges in a GRANT statement. If
the list of privileges is omitted, the READ privilege is
granted by default.

Once a privilege has been granted, it may be with-
drawn through use of the REVOKE command. The named
privileges are revoked from the grantee and from all
users to whom he has granted them, unless the grantee
has another, independent, source of the revoked privi-
leges. Revocation of a privilege may have other ramifi-
cations as well. For example, if the READ privilege on
the EMP relation is revoked from a user, all views de-
fined on EMP by that user must be dropped. These issues
are explored more fully in [121.

C 2 . Revoke from Anderson the power to update the
EMP table.

REVOKE UPDATE ON EMP FROM ANDERSON

The SEQUEL language allows a user who has CONTROL
privileges on a table to make assertions about the integ-
rity of the data in that table [131. An assertion is a SE-
QUEL predicate, which evaluates to TRUE or FALSE.
When the ASSERT statement is issued, the system checks
the current truth value of the predicate. If it is currently
FALSE, the assertion is rejected. If it is TRUE, the system
henceforth enforces the assertion against all further up-
dates to the data base. Each assertion is given a name by
the user who makes it. If an insertion, deletion, or up-
date statement violates an assertion, the statement is
rejected and a violation code is returned, together with
the name(s) of the violated assertion(s) .

The simplest kind of assertion pertains to a particular
relation (identified by a phrase such as ON EMP) and is
enforced for each tuple of the relation:

NOVEMBER 1976

C3. Assert that all employee salaries are less than
50000.

ASSERT AI ON EMP: SAL < 50000

C4. Assert that all clerks have a salary between 8000
and 15000.

ASSERT A2 ON EMP:
IF JOB = ‘CLERK’ THEN
SAL BETWEEN 8000 AND 15 000

As in queries, a label may be associated with an asser-
tion. The label may then be used in mapping blocks
within the assertion, to state some property to be en-
forced for all tuples of the relation on which the asser-
tion is based. The use of a label in an assertion is illus-
trated by C5.

C5. Assert that the NEMPS attribute of each row of the
DEPT table is equal to the number of employees in
the given department.

ASSERT A3 ON DEPT X: NEMPS =

(SELECT COUNT(*)
FROM EMP
WHERE DNO = X,DNO)

Another class of assertions are those that make an
overall statement about one or more relations, rather
than about individual tuples of a relation. This type of
assertion does not need an ON phrase, since the rela-
tion(s) involved are identified by the body of the asser-
tion, as shown in C6.

C6. Assert that no row in the EMP table may have a
DNO that is not present in the DEPT table.

ASSERT A4:
(SELECT DNO FROM EMP)

IS IN
(SELECT DNO FROM DEPT)

The assertions presented so far illustrate conditions
that must hold statically. Another class of assertions
deals with trapitions in the data base. This type of as-
sertion must state the circumstances under which it is to
be enforced: on insertion, deletion, or update of tuples in
a certain relation. When the designated action is per-
formed on a tuple of the given relation, the body of the
assertion is checked to determine whether the transition
is permissible. The transition may be described in terms
of OLD and NEW values, which represent the attributes
of the tuple before and after the transition. If a single
SEQUEL statement updates many tuples, the assertion is
checked for each tuple, and the entire statement is re-
fused if any tuple violates the assertion.

:HAMBERLIN, ET P iL.

C7. Assert that whenever an employee’s salary is up-
dated, the new salary must be at least as large as
the old salary.

ASSERT A5 ON UPDATE OF EMP(SAL):
NEW SAL >= OLD SAL

Transition assertions always apply to individual tuples
rather than to aggregates of tuples (e.g., a transition as-
sertion cannot be used to state that the new average sal-
ary of employees is greater than the old average salary).

The general rule for handling null values in the check-
ing of an assertion is that the presence of null values
should never cause an assertion to succeed if it would
otherwise fail or to fail if it would otherwise succeed.
This rule is implemented by the use of three-valued log-
ic. The assertion predicate, which in general may be a
Boolean condition, is evaluated using the truth tables in
Fig. 2. The assertion is satisfied if the result is TRUE or ?,
but it is violated if the result is FALSE. For example, an
assertion that no salary exceeds 20000 is not violated by
the presence of a null salary. An exception to this rule is
made in the case of assertions that mention null values
explicitly, e.g., EMPNO i= NULL. In these assertions the
null value is treated like any other value.

SEQUEL allows several statements to be grouped into
a transaction by placing them between the statements
BEGIN TRANSACTION and END TRANSACTION. Integrity
assertions are normally suspended within a transaction.
At the end of the transaction, all relevant assertions are
checked, and, if any are violated, the entire transaction
is backed out. This permits updates to be made that
cause the data base to pass through a temporary incon-
sistent state. For example, if a new employee is hired,
updates to EMP and DEPT might be made, causing the
data base to momentarily violate assertion A3 in exam-
ple C5. However, at the end of the transaction, assertion
A3 is satisfied.

The user who makes an assertion may optionally de-
clare that the checking of his assertion is never to be
delayed. If he includes the word IMMEDIATE in the as-
sertion prefix, the assertion is always enforced at the
completion of each SEQUEL statement. Since transition
assertions (i.e., those that compare OLD and NEW
values) operate on a tuple-by-tuple basis, they are al-
ways enforced immediately rather than at the end of a
transaction.

In System R, placing several statements inside a
transaction has the additional significance of declaring
that the system should execute these statements as an
atomic act without permitting interference (e.g., updates
to relevant data) by other users during the transaction.
Insofar as possible, System R attempts to protect each
user from any awareness of other concurrent users.
Therefore SEQUEL does not require a user to issue lock-

IBM J. RES. DEVELOP.

ing statements or statements of intent to update. The
setting and clearing of locks, and the detection and reso-
lution of deadlocks, are left up to the underlying system.
These issues, and their implementation in System R, are
discussed more fully in [81.

At any time within a transaction, a user may declare a
“save point” by issuing the statement SAVE (save-point-
name). Many save points may be declared within a sin-
gle transaction. At any time, a user may back out all the
changes that he has made to the data base since a partic-
ular save point by issuing the statement RESTORE (save-
point-name). If the save point name is omitted from the
RESTORE statement, the user is backed out to the begin-
ning of the current transaction. No RESTORE statement
may back out to a save point earlier than the beginning
of the current transaction. A RESTORE statement has no
effect on updates that have been made by other users.

In order to help maintain the integrity of the data
base, a user may define a trigger to be executed upon
occurrence of a specified action: READ, INSERTION, DE-
LETION, or UPDATE of a tuple in some particular table.
The body of the trigger, which consists of one or more SE-
QUEL statements, is executed immediately after the des-
ignated action is performed by any user. If a SEQUEL
statement performs an action (e g , an update) on many
tuples and this action invokes a trigger, the trigger is
executed repeatedly, once after the update of each tuple.
Triggers are always executed immediately and may not
be delayed until the end of a transaction. The body of
the trigger may use the words OLD and NEW to refer to
the previous and the updated values of the tuple, as
shown in C8.

C8. (This trigger automatically updates the relevant
NEMPS entries in the DEPT table whenever the DNO
of an employee is updated.)

DEFINE TRIGGER T1

ON UPDATE OF EMP(DNO1:
(UPDATE DEPT
SET NEMPS = NEMPS + 1
WHERE DNO = NEW EMP.DN0:

UPDATE DEPT
SET NEMPS = NEMPS - 1

WHERE DNO = OLD EMP.DN0)

A label may be attached to the tuple that invokes a
trigger, and the label may be used in the body of the trig-
ger. Also, a statement in the body of a trigger may con-
tain an IF clause, which makes its execution contingent
on some condition, as shown in C9.

C9. When an employee is deleted from EMP, if there are
no remaining employees in his department, delete
the corresponding DEPT record.

DEFINE TRIGGER r2
ON DELETION OF EMP X:

(IF (SELECT COUNT(*)
FROM EMP

WHERE DNO = X,DNO) = 0
THEN DELETE DEPT

WHERE DNO = X,DNO)

It is possible that a single update statement may in-
voke several triggers and several assertions. In this case,
the triggers are executed first, in system-determined
order. Since triggers are executed on a tuple-by-tuple
basis, a single SEQUEL statement may cause several trig-
gers to be executed after the update of each tuple. If
execution of a trigger invokes other triggers, these (sec-
ond-level) triggers are executed before continuing with
the original set of triggers. The definer of a trigger is re-
sponsible for ensuring that it does not take some action
that results in invoking itself in an infinite loop. Finally,
when the original statement and all its invoked triggers,
of all levels, have been executed, the set of relevant as-
sertions are checked. If any assertion fails, the statement
and all its triggers (or the current transaction and all its
triggers) are backed out.

Transition assertions (i.e., those that compare the OLD
and NEW values of a tuple) are always applied, like trig-
gers, on a tuple-by-tuple basis. A transition assertion
compares the value of the tuple before it is updated with
its value after it has been updated and all triggers in-
voked by the updating of that tuple have been executed.

A user with CONTROL authorization may drop an as-
sertion or trigger by means of a DROP command, e.g.,

DROP TRIGGER T2

Triggers are considered to be a part of the transaction
that invokes them (i.e., if the transaction is backed out,
all its triggers are backed out also). However, triggers
and assertions are authorized in the context of their
definer rather than in the context of their invoker. Typi-
cally the definer of an assertion or trigger is a highly au-
thorized user. He may, for example, define a trigger that,
in execution, updates a table that is not visible to the
user whose action invoked the trigger.

In System R assertions and triggers may be placed on
stored relations but not on derived views. This policy
avoids the difficult problem of finding, on update of a
tuple, the set of views that are affected and that should
have their assertions or triggers invoked. We feel that a
user who is sophisticated enough to be placing an asser-
tion or trigger into the system should be knowledgeable
enough to frame the assertion or trigger in terms of a
stored relation.

A final comment on the use of triggers is in order here.
The creator of a relation may wish to ensure that, when- 569

SEQUEL 2 NOVEMBER 1916

ever the relation is updated, a complex series of asso-
ciated actions takes place. Rather than using a SEQUEL
trigger, the creator may wish to write a host language
program, as illustrated in the next section, that updates
the relation according to some input parameters and also
performs the associated actions. The creator may then
grant to other users, not generalized UPDATE rights on
the relation, but only the right to execute the program.

Host language coupling
SEQUEL 2 is designed to be used both as a stand-alone
language for interactive users and as a data sublanguage
embedded in a host programming language. The features
in the preceding sections have been described from the
point of view of the interactive user. This section de-
scribes the additional language features that are provid-
ed for the purpose of host language coupling. Where
necessary, we refer to the specific details of the System
R implementation.

System R permits SEQUEL statements to appear as
statements in a PL/I program. The SEQUEL statements
are discovered by a precompiler, which replaces them
with valid PL/I calls to a run time module that performs
the desired function.

For a query, a means must be provided to deliver the
result to the host program. Therefore, when a query
appears in a program, it may have an INTO clause con-
taining a list of host program variables that serve as tar-
gets for the selected attributes, as shown in P 1.

P 1 . Return employee no. 507’s job in program variable
x and his salary in program variable Y.

SELECT JOB,SAL
INTO X,Y
FROM EMP
WHERE EMPNO = 507;

In addition to program variables in the INTO clause, pro-
gram variables may appear anywhere a constant may be
used, in a query or any other type of SEQUEL statement.
Wherever a program variable appears, the programmer
may optionally specify a pair of variable names, separat-
ed by a colon. The first variable of the pair is called the
value holder, and the second, which must have data type
BIN FIXED, is called the null indicator. A zero in the null
indicator denotes an actual value in the value holder; a
negative number in the null indicator denotes the null
value. These features are illustrated by P2.

P2. Return in program variable X1 the salary of the
employee whose employee number matches pro-
gram variable 2 1. (Variables X2 and 2 2 serve as

570 null indicators.)

D. D. CHAMBERLIN, ET AL.

SELECT SAL
INTO X1:XZ
FROM EMP
WHERE EMPNO = Z1:ZZ;

Whenever a declared program variable name duplicates
the name of a column in the data base (e.g., WHERE SAL =
COMM if COMM is a declared program variable), the
system assumes the reference is to the program variable
rather than to the column.

The above examples return only one tuple to the host
program (if the query evaluates to more than one tuple,
only the first is returned). More often, however, the
programmer may wish to identify a set of tuples and
process them one after another. For this purpose we in-
troduced the concept of a “cursor.” A cursor is a sym-
bolic name that a programmer may associate with a
query and use to retrieve the query result, one tuple at a
time, as shown in P3.

P3. Read a department number from the terminal, then
fetch and display the names of all employees in
the given department. (The statements marked by
an asterisk in the margin are intercepted by the
SEQUEL precompiler. All other statements are
standard PL/I. The asterisks are not part of the
program.)

P3: PROC OPTIONS(MA1N);
DCL X CHAR(SO), Y CHAR(2);
LET C1 BE *

*
*

SELECT NAME INTO X
FROM EMP WHERE DNO = Y;

DISPLAY(‘DNO?’) REPLY(Y);
OPEN C1;
DO WHILE (CODE = OK);

*

* FETCH C1;
DISPLAY(X1;

END ;
CLOSE C1; *

END P3;

In this example the declaration of X and Y is standard
PL/I. The statement LET CI BE (query) is like a declara-
tion to the data base system, which associates the cursor
name C1 with the given query. The OPEN C1 statement
binds the value of the input variable Y and prepares to
deliver tuples according to the query. Each execution of
FETCH C I delivers a new tuple into the program vari-
a b l e (~) specified with the query. CODE is a special vari-
able in which the data base system places a result code
after each data base call. (We do not give a complete
treatment of result codes here.) The CLOSE C I state-
ment informs the system that no further fetches will be
issued on the query currently associated with C1. If C1

IBM J. RES. DEVELOP.

Whenever a cursor is open, it maintains a position in
the set of tuples on which it is defined (called the “ac-
tive set”). If each tuple of the active set is associated
uniquely with a tuple of a relation (i.e., the query in-
cludes a key of the relation), the cursor is said to be
“updateable.” This means that the current position of
the cursor may be referred to in an UPDATE or DELETE

statement to denote the tuple to be updated or deleted.
For example, suppose we wish to modify the program in
P3 so that it gives a raise in salary to each employee in
the indicated department. This can be done by replacing
the DO loop of P3 with the following:

DO WHILE (CODE = OK);

* FETCH C1;
/ * Compute the new salary for this

employee in program variable Z * /
I * UPDATE EMP

I *
*

SET SAL = Z
WHERE CURRENT OF C1;

END:

If the phrase WHERE CURRENT OF (cursor-name) is used
in an update or deletion statement, it may not be mixed
with other selection predicates. A cursor reference may
not be used in an INSERT statement, since relations are
unordered objects and hence insertion via a cursor is
undefined.

Another type of cursor reference may be used to se-
lect tuples by comparing their values with those of the
current tuple of a cursor, as shown in P4.

P4. Suppose c 2 is positioned on a DEPT tuple. Define
C5 to be the set of EMP tuples whose DNO matches
the DEPT tuple of C2.

LET C5 BE
SELECT * FROM EMP
WHERE DNO = DNO OF CURSOR C2 ON DEPT;

Note that CURRENT OF c 2 denotes the actual tuple on
which c 2 is positioned, but DNO = DNO OF CURSOR C2
searches for another set of tuples by value matching.
The phrase ON DEPT informs System R that Cursor c 2 is
positioned on a DEFT tuple. This fact may be useful in
access path selection (e.g., there may be a link from
DEPT to EMP by matching DNO). Neither of the two
types of cursor reference changes the position of the
cursor.

SEQUEL 2 provides a special facility called EXECUTE

that enables a host program to support interactive users.
Suppose that the program, at run time, reads from a ter-

P5. Call for System R to execute the SEQUEL statement
in program variable QSTRING.

EXECUTE QSTRING;

If an interactive user wishes to execute a query, the
host program supporting the user must have some means
of fetching the query result and displaying it. This is
difficult because the program cannot know in advance
the number of fields in the query result or their data
types. The method used combines a cursor name with an
EXECUTE statement, as shown in P6.

P6, Read a query into QSTRING and fetch and display
the query result. (Asterisks denote SEQUEL; re-
mainder is PLII.)

DISPLAYCENTER QUERY’) REPLY(QSTR1NG);
* LET C1 BE EXECUTE QSTRING;
* DESCRIBE C I INTO (pointer-1);

/ * Format a buffer to hold one tuple and
set pointer-2 to point to it- see
explanation below. * /

* OPEN C1;

* FETCH C I INTO (pointer-2);
DO WHILE (CODE=OK);

1 * Display the tuple * /
END;

* CLOSE C1;

In this program the statement LET C1 BE EXECUTE
QSTRING associates the name C1 with the query that is
present at run time in QSTRING. The DESCRIBE C I state-
ment returns a description of the number of fields and
data types of the result into the array indicated by
(pointer- 1). This enables the program to allocate a buf-
fer space to hold each field of a result tuple. The pro-
gram then constructs an array of pointers to these field-
buffers and sets (pointer-2) to point to the array. The
OPEN c1 statement prepares the system for delivery of
the first tuple. Each FETCH c1 statement then delivers
one tuple into the indicated buffers. After the statement
CLOSE C I has been executed, a new query may be read
into QSTRING. Subsequent execution of the statements
DESCRIBE C I , OPEN C I , and FETCH c1 would then refer
to the new query.

In writing a program to support an interactive user,
the programmer must distinguish between query state-
ments (e.g., SELECT* FROM EMP) and other statements
that yield no result (e.g., DELECT EMP WHERE EMPNO =

505) . This is done by examining the first word of the
input string. All queries begin with the word SELECT and
are handled by means of 571

NOVEMBER 1976 SEQUEL 2

LET C1 BE EXECUTE QSTRING;

All statements not beginning with SELECT are handled by
means of

EXECUTE QSTRING;

To allow a program to save a query result after exam-
ining it, the syntax of an assignment statement is extend-
ed to permit assignment of the active set of a cursor to a
new relation, as shown in P7.

P7. Assign the active set of cursor cs to a new relation
named EXEMPT having columns EMPNO,NAME,
and JOB.

ASSIGN TO EXEMPT(EMPNO,NAME,JOB): CURSOR C.5;

A PL/I program with embedded SEQUEL statements is
presented to the System R precompiler. All SEQUEL
statements are discovered and replaced by calls to a run
time module that executes the statement. Where possi-
ble, the SEQUEL statement is parsed and an optimal ac-
cess path is chosen for it at precompilation time. When
this is not possible, as in the case of the EXECUTE fea-
ture, the parsing and access path selection is done at run
time.

Authorization for a program to perform various ac-
tions is checked, at precompilation time, against the
privileges of the user who is compiling the program. If
the user possesses the necessary privileges, he receives
the RUN privilege on the program. He can then run the
compiled program without further checking of authoriza-
tion. If the author of the program possesses the GRANT
option for all the privileges invoked by the program,
he receives the RUN privilege with the GRANT option.
This enables him to grant to other users the ability to
run his compiled program. Thus a user may have the
RUN privilege on a program that updates salaries, even
though he is not authorized to update salaries in any way
except by invoking the program.

An exception to the above authorization rules is made
in the case of the EXECUTE statement. An EXECUTE
statement should not be authorized in the context of the
program author, because the author cannot predict what
action will be called for at run time. The action taken by
an EXECUTE statement is always authorized at run time,
in the context of the user who is running the program.

Summary
We have described the SEQUEL 2 data sublanguage,
which provides a consistent, English keyword-oriented
syntax for query as well as for data definition, manipula-
tion, and control. Features of SEQUEL 2 range from sim-
ple query facilities easily learned by nonspecialists in

572 data processing to complex facilities intended for profes-

sional programmers and data base administrators. We
have shown how SEQUEL 2 may be embedded in a pL/I
program and how such a program may be written to
support SEQUEL 2 as a stand-alone interface for interac-
tive users. SEQUEL 2 is the main external interface of the
System R experimental data base system. We wish to
emphasize that System R and SEQUEL 2 are parts of a
research project in data base management and are not
planned as IBM products.

Appendix: SEQUEL 2 syntax
Here we present a simplified version of the BNF syntax
definition for SEQUEL 2 . Emphasis has been placed on
readability rather than rigor, and therefore a few minor
ambiguities have been permitted. Some features that are
highly specific to System R, relating to bulk loading and
management of physical segments, have been omitted.
Also, this syntax permits the generation of some state-
ments that are not semantically meaningful. A more com-
plete but less readable production syntax is currently in
use in the System R project.

In this notation, square brackets [] indicate optional
constructs. The sections that describe query, dml-, ddl-,
and control-statements are useable either from a host
language or as a stand-alone query language. The last
section, which describes cursor operations, is intended
for use with a host language only.
statement : : = query

I dml-statement
1 ddl-statement
1 control-statement
I cursor-statement

I insertion
I deletion
1 update

dml-statement : : = assignment

query : : = query-expr [ORDER BY ord-spec-list]
assignment : : = ASSIGN TO receiver : query-expr

I ASSIGN TO receiver : CURSOR

receiver : : = table-name [(field-name-list)]
field-name-list : : = field-name

insertion : : = INSERT INTO receiver : insert-spec
insert-spec : : = query-expr

deletion : : = DELETE table-name [var-name]

update : : = UPDATE table-name [var-name]

where-clause : : = WHERE boolean

set-clause-list : : = set-clause

cursor-name

I field-name-list , field-name

I lit-tuple

[where-clause 3

SET set-clause-list [where-clause]

1 WHERE CURRENT OF cursor-name

I set-clause-list , set-clause

D. D. CHAMBERLIN, ET AL. IBM J. RES. DEVELOP.

set-clause : : = field-name = expr

query-expr : : = query-block
I field-name = (query-block)

I query-expr set-op query-block
I (query-expr 1

set-op : := INTERSECT 1 UNION I MINUS
query-block : : = select-clause [INTO target-list]

FROM from-list
[WHERE boolean]
[GROUP BY field-spec-list

select-clause : : = SELECT [UNIQUE] sel-expr-list

sel-expr-list : : = sel-expr

sel-expr : : = expr

[HAVING boolean]]

1 SELECT [UNIQUE] *

1 sel-expr-list , sel-expr

1 var-name . *
I table-name . *

target-list : : = host-location
[target-list , host-location

from-list : : = table-name [var-name]

field-spec-list : : = field-spec

ord-spec-list : : = field-spec [direction]

direction : : = ASC 1 DESC

boolean : : = boolean-term

I from-list , table-name [var-name]

1 field-spec-list , field-spec

1 ord-spec-list , field-spec [direction]

[boolean OR boolean-term
boolean-term : : = boolean-factor

boolean-factor : : = [NOT] boolean-primary
boolean-primary : : = predicate

predicate : : = expr comparison expr

I boolean-term AND boolean-factor

I (boolean)

I expr BETWEEN expr AND expr
I expr comparison table-spec
I (field-spec-list) = table-spec
[(field-spec-list) [IS] [NOT]

I IF predicate THEN predicate
[SET (field-spec-list) comparison

I SET (field-spec-list) comparison

1 table-spec comparison table-spec

IN table-spec

table-spec

SET (field-spec-list)

table-spec : : = query-block
I (query-expr
1 literal

expr : : = arith-term

arith-term : : = arith-factor
I expr add-op arith-term

I arith-term mult-op arith-factor
arith-factor : : = [add-op] primary

primary : : = [OLD 1 NEW 3 field-spec
I set-fn ([UNIQUE I expr

I constant
I COUNT ('I)

I (expr 1
field-spec : : = field-name

I table-name . field-name
1 var-name . field-name

comparison : : = comp-op
I CONTAINS
1 DOES NOT CONTAIN

I [IS 1 IN
1 [IS] NOT IN

comp-op : : = = I -= I > I >= I < 1 <=
add-op : : = + I -
mult-op : : = * 1 /
set-fn : : = AVG I MAX] MIN I SUM I COUNT I

literal : : = (lit-tuple-list)
identifier

1 lit-tuple
I (entry-list)
1 constant

lit-tuple-list : : = lit-tuple

lit-tuple : : = (entry-list)
entry-list : : = entry

entry : : = [constant]
constant : : = quoted-string

1 number
1 host-location

1 lit-tuple-list , lit-tuple

1 entry-list , entry

1 NULL
I USER
I DATE
1 field-name OF CURSOR cursor-name

ON table-name
table-name : : = name
image-name : : = name
link-name : : = name
asrt-name : : = name
trig-name : : = name
name : : = [creator . 3 identifier
creator : : = identifier
user-name : : = identifier
field-name : : = identifier
var-name : : = identifier
cursor-name : : = identifier
pointer : : = identifier
save-point-name : : = identifier
host-location : : = identifier [: identifier]
integer : : = number

ddl-statement : : = create-table
[expand-table 573

SEQUEL 2 NOVEMBER 1976

1 create-image
I create-link
I define-view
1 define-synonym
I drop
1 comment

create-table : : = CREATE TABLE table-name
(field-defn-list)

field-defn-list : : = field-defn
1 field-defn-list , field-defn

field-defn : : = field-name (type [, NONULL])
type : : = CHAR (integer) [VAR]

I INTEGER
I SMALLINT
1 DECIMAL (integer , [integer])

expand-table : : = EXPAND TABLE table-name ADD

create-image : : = CREATE [image-mod-list] IMAGE

I FLOAT

COLUMN field-defn

image-name
ON table-name (ord-spec-list)

image-mod-list : : = image-mod

image-mod : : = UNIQUE

create-link : : = CREATE [CLUSTERING] LINK

1 image-mod-list image-mod

1 CLUSTERING

link-name
FROM table-name (field-name-list)
TO table-name (field-name-list)
[ORDER BY ord-spec-list]

define-view : : = DEFINE VIEW table-name
[(field-name-list)] AS query

define-synonym : := DEFINE-SYNONYM identifier AS

drop : : = DROP system-entity name
comment : : = COMMENT ON system-entity name :

table-name

quoted-string

field-name
I COMMENT ON COLUMN table-name .

: quoted-string
system-entity : : = TABLE I VIEW 1 ASSERTION

control-statement : : = asrt-statement
1 TRIGGER 1 IMAGE 1 LINK

I define-trigger
1 grant
I revoke
I begin-trans
I end-trans
I save
I restore

asrt-statement : : = ASSERT asrt-name [IMMEDIATE]
[ON asrt-condition] : boolean

asrt-condition : : = action-list
574 I table-name [var-name 3

D. D. CHAMBERLIN, ET AL.

action-list : : = action
I action-list , action

action : : = INSERTION OF table-name [var-name]
I DELETION OF table-name [var-name 3
I UPDATE OF table-name [var-name]

[(field-name-list)]
define-trigger : : = DEFINE TRlGcER trig-name

ON trig-condition :
(statement-list)

I READ OF table-name [var-name]

I statement-list ; cond-statement

1 IF boolean THEN statement

trig-condition : : = action

statement-list : : = cond-statement

cond-statement : : = statement

grant : : = GRANT [auth] table-name TO user-list

auth : : = ALL RIGHTS ON
I operation-list ON
I ALL BUT operation-list ON

1 user-list , user-name

[WITH GRANT OPTION]

user-list : : = user-name

1 PUBLIC
operation-list : : = operation

operation : : = READ
1 operation-list , operation

1 INSERT
DELETE
U P DATE
EXPAND
IMAGE
LINK
CONTROI

RUN

[(field-name-list)]

revoke : : = REVOKE [operation-list ON 3 table-name

begin-trans : : = BEGIN TRANSACTION
end-trans : : = END TRANSACTION
save : : = SAVE save-point-name
restore : : = RESTORE [save-point-name]

FROM user-list

cursor-statement : : = let
I open
1 fetch
I close
I describe
I execute

let : : = LET cursor-name BE query
I LET cursor-name BE execute

open : : = OPEN cursor-name
fetch : : = FETCH cursor-name [INTO pointer]
close : : = CLOSE cursor-name
describe : : = DESCRIBE cursor-name INTO pointer
execute : : = EXECUTE host-location

IBM J . RES. DEVELOP.

Cited and general references
1. E. F. Codd, “A Relational Model of Data for Large Shared

Data Banks,” Commun. ACM 13, 377 (June 1970).
2. D. D. Chamberlin and R. F. Boyce, “SEQUEL: A Struc-

tured English Query Language,” Proc. ACM-SIGFIDET
Workshop, Ann Arbor, MI, May 1974.

3. G. D. Held, M. R. Stonebraker, and E. Wong, “INGRES:
A Relational Data Base System,” Proc. AFIPS National
Computer Conference, Anaheim, CA, May 1975.

4. M. M. Zloof, “Query By Example,” Proc. AFIPS National
Computer Conference, Anaheim, CA, May 1975.

5 . R. F. Boyce, D. D . Chamberlin, W. F. King, and M. M.
Hammer, “Specifying Queries as Relational Expressions:
The SQUARE Data Sublanguage,” Commun. ACM 18,
621 (November 1975).

6 . P. Reisner, R. F. Boyce, and D . D. Chamberlin, “Human
Factors Evaluation of Two Data Base Query Languages:
SQUARE and SEQUEL,” Proc. AFIPS National Com-
puter Conference, Anaheim, CA, May 1975.

7. P. Reisner, “Use of Psychological Experimentation as an
Aid to Development of a Query Language,” Research
Report RJ 1707, IBM Research Laboratory, San Jose,
CA, January 1976.

8. M. M. Astrahan, et al., “System R: A Relational Approach
to Data Base Management,” ACM Trans. on Data Base
Sysfems 1, 97 (June 1976).

9. E. F. Codd, “Normalized Data Base Structure: A Brief
Tutorial,” Proc. ACM-SIGFIDET Workshop, San Diego,
CA, November 197 1.

NOVEMBER 1976 S

10. R. Bayer and E. McCreight, “Organization and Mainte-
nance of Large Ordered Indices,” Proc. ACM-SIGFIDET
Workshop, Houston, TX, November 1970.

11. D. D. Chamberlin, J. N. Gray, and I. L. Traiger, “Views,
Authorization, and Locking in a Relational Data Base Sys-
tem,” Proc. AFIPS National Computer Conference, Ana-
heim, CA, May 1975.

12. P. P. Griffiths and B. W. Wade, “An Authorization Mecha-
nism for a Relational Data Base System,” Proc. ACM
SICMOD Conjerence, Washington, DC, June 1976.

13. K. P. Eswaran and D. D. Chamberlin, “Functional Specifi-
cations of a Subsystem for Data Base Integrity,” Proc. In-
ternational Conf. on Very Large Data Bases, Framingham,
MA, September 1975.

14. J. Mylopoulos, S. A. Schuster, and D. Tsichritzis, “A Mul-
ti-level Relational System,” Proc AFIPS National Com-
puter Conference, Anaheim, CA, May 1975.

Received Muy 25, 1976; revised July 6, 1976

The authors are located ut the IBM Research Labora-
tory, 5600 Cottle Rd., Sun Jose, CA 95193.

575

:EQUEL 2

