
A high-level data-base system, the Peterlee Relational Test Ve-
hicle (PR T v) , provides flexible, interactive data-base support and
functional extensibility. The user sees the system primarily
through a programming language called I S B L , which is designed
for manipulating bulk data held in relations. P R T V is not a full-
fledged data-base system, but rather an evolving prototype
which is expected to aid in solving some of the problems that
have been encountered in using relational data bases. P R T V
embodies research both in data-base language design and in
eficient implementation techniques.

The Peterlee Relational Test Vehicle-a system overview
by S. J. P. Todd

A high-level data-base system is one in which applications are
expressed in a language meaningful to the user, and in which data
are represented and manipulated in a natural way. At IBM’S
United Kingdom Scientific Centre in Peterlee, County Durham,
a major research aim is to understand the problems associated
with designing and using such systems for general applications.
A number of software prototypes have been implemented to test
various designs. One of those prototypes, the Peterlee Relation-
al Test Vehicle (PRTV), is the subject of this report, which
covers both internal and external features of particular interest
in data-base systems design.

PRTV is not a full-fledged data-base system; many features es-
sential to such a system, such as backup and recovery, have not
been implemented. This report is intended to address problems
of greater significance than PRTV itself, however, and it is be-
lieved that continued work with the evolving prototype will
provide answers to some of those problems. Indeed, it is likely
that one outcome of the continued use of PRTV will be that more
problems will become apparent.

PRTV is an interactive data-base system intended to be used ei-
ther as a stand-alone system for simple data bases or as a data
subsystem for an applications system. The main objectives are
high-level, flexible data-base support and functional extensibili-
ty. High-level support is provided by concepts based on the rela-
tional model. To give maximum flexibility in using the data

NO. 4 * 1976 PRTV OVERVIEW

major
aspects
of PRTV

285

base, relations are treated as named variables by the user lan-
guage, ISBL (Information System Base Language). New rela-
tions can be created and assigned at will. Extensibility is provid-
ed by allowing user written PL/I functions to be added to the sys-
tem. PRTV also has a flexible method for defining multiple views
of data.

PRTV is designed for efficiency in that instead of each user rela-
tion having its own file, there is flexibility in mapping between
system files and user relations. This design allows greater free-
dom in the storing of data, and it allows the system to implement
user requests more efficiently by reordering commands and
choosing the most suitable access paths.

The system is modular, so small pieces can be changed in order
to test new ideas. In addition, all routines that deal with the
world outside the PRTV system-the operating system, termi-
nals, card readers, printers, and disk r/o -have been implement-
ed as small utility routines that can be converted readily for
different operating systems and devices.

Use of the relational model as a formal background to high-level
data bases was proposed by Codd,' who also discussed the rela-
tional algebra. Among the first implementations was the IS/I sys-
tem at Peterlee.' PRTV is based on experience with that proto-
type.

Concepts and facilities

The user sees the PRTV system principally through the Informa-
tion System Base Language (ISBL), which is designed for manip-
ulating bulk data held in relations. It provides for variables,
expressions, and assignments in much the same way as do con-
ventional programming languages such as PLII. All variables
denote relations, and the only operations that can be uscd in
expressions are those that produce relational results.

In addition to assignment statements, ISBL provides control
statements for creating new domains, sharing relations among
users, and similar functions. For cases that cannot be handled
by a relational algebra operating on stored relations, ISBL per-
mits escape to previously linked PL/I extensions. There are stan-
dard extensions for the entering and listing of relations and for
the basic arithmetic and string operations. A user can add other
extensions as required. These extensions can themselves issue
ISBL statements; they can also access data from a relation.

ISBL does not have flow or control statements such as DO WHILE
or GO TO.

TODD IBM SYST J

Figure 1 Relations can be thought of a s tables. This example represents the informa-
tion that book number 5 i s Austen's Persuasion, and number 7 is Goethe's
Faust.

~

ACQ-NO

4 DOMAIN NAMES NAME NAME ACQ-NO

4 SELECTORS TITLE AUTHOR

t I I 1

The basic units understood by PRTV are called objects. Objects structures
are grouped into sets called domains, each of which has a name.
For example, in a library application there might be a domain
called NAME, consisting of the titles of books and the names of
authors and borrowers, and there might be another domain,
ACQ-NO, consisting of acquisition numbers.

Every object is held in the system as either numeric or character
data and is said to have data type N or C. All objects in a do-
main must have the same data type, which then is the data type
of the domain. A new domain can be created at any time. For
example, the ISBL statement

CREATE DOMAIN NAME, C

would be used to create the domain called NAME with data type
C (character objects).

Information connecting the objects is held in relations. A rela-
tion is like a table, as shown in Figure 1. This relation represents
the information that book number 5 is Austen's Persuasion, and
number 7 is Goethe's Faust. Each row of the table is a tuple of
the relation, and each column is a component. All elements in a
column must be drawn from the same domain. The list of com-
ponents from which the objects of a tuple or relation are drawn
is the relation type (or simply t-ype) of the tuple or relation.

A relation can be assigned to a named variable, but intermediate
values in expressions can be left unnamed. The relation dis-
cussed above might be called BOOKS.

Each component of a relation is identified by a name called a
sefector. Often the selector is the domain name, but when the
same domain underlies several components, the selectors must
differ from the domain name. Usually the domain names are not
included in the tabular representation (see Figure 2) .

Figure 2 In a relation, the order
of tuples and compo-
nents is arbitrary. The
table shown below rep-
resents the same rela-
tion as the table in
Figure 1. The domain
names are omitted; only
the selectors are shown.

Persuasion 5 Austen

NO. 4 * 1976 PRTV OVERVIEW 287

Projection (%) also acts on one relation to produce another. For
each tuple in the original, the result contains a tuple with the
components renamed or only some components present. A
projection list specifies the selection of components and their
new names. It contains selectors from the input relation, each
optionally qualified by a new selector for the corresponding
component in the resulting relation. To rename some compo-
nents and leave the remainder as before, a list is given of the
selectors to be changed with their new names, followed by, . . .
(meaning and so on) . For example:

BOOKS % AUTHOR,TITLE
BOOKS % AUTHOR - >WRITER,TITLE
BOOKS % AUTHOR - >WRITER,. . .
The first expression creates a relation of degree 2 with selectors
AUTHOR and TITLE. The relation denoted by the second expres-
sion is similar except that the AUTHOR component is renamed
WRITER. The third expression yields a relation similar to books,
but with the AUTHOR component renamed as in the second.

Because two distinct tuples of the input relation may become
identical on projection, the cardinality of the result of a projec-
tion may be smaller than the cardinality of its input. This effect,
a natural result of the set-theoretic nature of relations, is akin to
the purging of files.

The operations union (+), intersection (.), and dference (-)
depend on the relation as a set of tuples. Each operates on two
relations to produce a third. The result of a union is a relation
that contains all the tuples appearing in either operand. An in-
tersection produces a relation containing only tuples that appear
in both operands. In either operation, the input relations must be
of the same type, which becomes the relation type of the result.
For example, the statement

BOOKS f NEW-BOOKS

produces the set of tuples for all books now in the library, and

BOOKS . NEW-BOOKS

produces a set containingdnly tuples from the relations BOOKS
and NEW_BOOKS.

The operation difference finds tuples in the first relation for
which there is no tuple in the second relation that matches in the
components with matching selectors. The result is called a d$-
ference on the common selectors. (When all the components
match for the relations, this operation becomes the conventional
relational difference.) For example, a library has the relation

LOANS(ACQ-NO, NAME:BORROWER, DATE:DATELOUT).

NO. 4 * 1976 PRTV OVERVIEW 289

Then the statement

BOOKS - LOANS

produces a difference on ACQ-NO. It gives the acquisition num-
ber, author, and title of all books not currently on loan.

The final operation, join (*) , also produces a new relation from
two operand relations. In the most extreme case, every tuple in
the first relation is paired with every tuple in the second. For
each pair, a new tuple is created with all the objects from both
tuples. This is called a concarenation of the contributing tuples.
All these new tuples together form the result of the join. The
cardinality of the result is the product of the cardinalities of
the input relations, and the degree of the result is the sum of the
degrees of the inputs. This form of join is a full quadratic join.

More common is the natural join, or equijoin. If selectors from
the two relations match, tuples are put into the result only if the
values for those selectors in the contributing tuples also match.
The concatenated tuple holds only one occurrence of the selec-
tor, which contains the common value. The result is a join on
the common selectors. Its cardinality can be any value from
zero to the product of the input cardinalities. The degree of the
result is the sum of the input degrees less the number of match-
ing selectors. When the two relation types are the same, an equi-
join degenerates into an intersection. In the library example, the
statement

BOOKS * LOANS

produces a join on ACQ-NO, combining information from both
relations about the books on loan. The result is a relation of de-
gree 5 with selectors ACQ-NO, AUTHOR, TITLE, BORROWER, and
DATELOUT.

The automatic matching of selectors in the join and difference
operations sometimes associates selectors that are required to
be different, or fails to associate those that should be associated.
The rename option of the projection operation is used to over-
come this problem. To find pairs of books by the same author,
for example, the author/title part of BOOKS is joined to itself on
author. To avoid joining on title, the title components are re-
named TITLEl and TITLE^. This operation gives triples of author
with two titles, from which the tuples with identical titles are
eliminated. In ISBL, the operation appears as follows:

(BOOKS%AUTHOR,TITLE - > TITLEI) *
(BOOKS%AUTHOR,TITLE - > TITLE2) : TITLEl 1=TITLE2.

user Relational operations provide a convenient method of manipu-
extensions lating and coordinating data, but they are incapable of carrying

out computations. Also, a data base cannot provide listing and

290 TODD IBM SYST J

data-entry services precisely tailored to user requirements.
Rather than incorporating these services into ISBL, PRTV pro-
vides mechanisms for escape to two types of user extensions.
One acts on a single tuple at a time; the other allows actions
across sets of tuples. Tuple-at-a-time extensions are simpler to
write, and they operate more efficiently, but they are not so
powerful as general extensions.

Procedures are provided in PRTV to simplify the linking of new
user extensions into the system. For a tuple-at-a-time extension,
the user enters the names and data types of the parameters and
the body of the PL/I code. The PL/I code is completed automati-
cally by the addition of the procedure and declare statements for
the parameters. Then it is compiled and linked into the system,
and the directory of functions is updated.

Tuple-at-a-time extensions are used for two kinds of operation:
providing computed fields and providing user defined selection
criteria. The user writes a PL/I program that accepts as input
only the appropriate elements from a single tuple. It returns ei-
ther the computed elements or a flag (the predicate j a g) indi-
cating whether the tuple satisfies the criteria. PRTV chooses the
elements to be passed to the function from the tuple according
to the ISBL statement used to invoke it, and it provides the con-
trol to call the function for each tuple of a relation. An example
is the PL/I procedure ISIN:

ISIN: procedure (a,b) returns (bit);
declare (a,b) character (*) :
declare predicatedag bit;

.predicate_flag = (index (b,a) 1=0);

return (predicate-flag) ;
end;

The last three lines are the only ones entered by the user. This
procedure returns true only if character string a occurs in string
6. Its use in ISBL is illustrated by the statement

LIST BOOKS * ISIN('RelatiOn',TITLE)

which selects books with the character string Relation in their
titles.

LIST BOOKS * ISIN(AUTHOR,TITLE)

is an expression that might be used by egocentric authors.

A computed field might be provided by a function DUE, which,
given the loan date of a book, would return the due date. Then
the statement

LOANS * DUE(DATEL0UT I DATE:DATE-DUE)

NO. 4 * 1976 PRTV OVERVIEW

and DATELDUE. (The input and output parameters are separated
by 1 , and for the output, both the domain (DATE) and selec-
tor (DATEDUE) must be given.) The join notation is important,
since ISIN is a procedure whereas ISIM(AUTHOR,TITLE) is a rela-
tion with selectors AUTHOR and TITLE (Hall et ai.3).

general General extensions call the ISBL interpreter recursively, or they
extensions use the relational file interface to access and write data-base

data one object at a time. They are used for interaction with the
outside world (listing, data entry), for computations across tu-
ples (subtotal), and for macro-type operations (definition of di-
vision in terms of other relational operations). Character strings
are passed into the PL/I program from the ISBL interpreter.
These strings can be treated in any way-for example, as a rela-
tion name or as a list of selectors.

The standard system utility ENTER accepts as parameters the
name of a relation to be entered and the components it is to be
given. The ISBL call to enter the BOOKS relation is

CALL ENTER(BOOKS IACQ_NO,NAME:AUTHOR,NAME:TITLE).
Another extension is SUBCOUNT, which counts the occurrences
of tuples for each value in a set of components. For example,
the statement

CALL SUBCOUNT(LOANS~BORROWER~RESULT)

assigns to RESULT a relation giving the number of books that
each borrower currently has on loan.

relational Relational files are used to move data between the data base and
files a program. There are two kinds of relational file:

A relational r e a d j l e is a “snapshot” of the data in a relation.
The tuples are ordered and the file has a cursor. A relational
expression can be turned into a file, in which case the tuples
are transferred one at a time from the file to the program.

A relational write file is used for transforming data from PL/I
into the data base. The file is written tuple by tuple, and
when the file is closed, it is given a name and turned into a
relation.

It is important to note that relations, relational read files, and 1

relational write files are all distinct. A tuple cannot be read from
a relation, for example, nor can a relational write file take part in
a union.

General extensions can also create and manipulate relations us-
ing ISBL. An ISBL statement is built up in the program, then

292 TODD IBM SYST J

submitted to the system recursively using the PL/I statement
CALL XEQ. General extensions that are included as standard
in PRTV are LIST, ENTER, SUBTOTAL, and DIVIDE.

Other points of especial interest in the use of PRTV are dis- other
cussed below: features

of PRTV

Update. ISBL does not have an update capability in the nor-
mally accepted sense, but the value of a relation variable can
be changed by an assignment into it. For example,.the state-
ment A = A + s would insert a set (s) of tuples into a rela-
tion (A).

An update that is equivalent to changing a field of a record
can be accomplished only by using complicated expressions,
or by PL/I extensions using relational files. An update capa-
bility eventually should be modeled at the ISBL level. At pre-
sent, the implications beyond simple CHANGE or INSERT
commands are not fully understood, so no update facility has
been implemented.

Workspace. When a user signs on, PRTV gives him an empty
workspace. The workspace is a temporary (one-session)
association of relation identifiers with user names. The
names can be loaded explicitly from the user’s workspace
index, but they will be loaded implicitly if a referenced vari-
able is not in the workspace. Unless the user explicitly re-
quests that a change be made permanent, the result of any
update or assignment will be limited to the workspace. Thus
the workspace provides a convenient means of testing possi-
ble changes without altering the operational data. Work-
spaces cannot be saved from one session to another, as they
can in APL.

Multiple users. ISBL enables different users to work with the
same data, each having access to different parts of the data.
When a user signs on, he gives his name and a password to
identfy a set of named relations belonging to that user. New
relations created are private, but they can be shared explicit-
ly with other users. Concurrent use of a single data base by
many users is not supported.

Variable binding. When a variable is used in an expression,
ISBL allows binding both by value and by name.

Binding by value is the default binding: the current value of
the named relation is found and inserted into the expression.
If the expression is used in an assignment, any subsequent

a change of value in the assigned relation. The effect is the
same as the use of a variable on the right-hand side of an as-
signment in P L ~ .

If an expression specifies binding by name, the named rela-
tion is not evaluated at the time. Instead, its name is held in a
procedure which represents the expression. If the expression
is used in an assignment, any subsequent change of value in
the relation bound by name is reflected as a change of value
in the assigned relation. The relation bound by name is thus
evaluated whenever the assigned relation is used. Binding by
name can provide different (read-only) views of the same
data. For example, with the relations BOOKS and LOANS, the
expression

FULL-LOANS = N!BOOKS H N!LOANS

causes changes in BOOKS or LOANS to be reflected automati-
cally in FULL-LOANS. Relations such as FULL-LOANS, whose
values depend on the values of other relations, are called de-
lined relations.

Excluded features. PRTV does not attempt to provide rela-
tional calculus or interfaces for inexperienced users, nor
complex data-entry or report-generation features, nor nonre-
lational views of data other than relational files. All of these
features can be provided by systems using PRTV as a subsys-
tem. Integrity and backup features are also excluded.

examples The following example shows how relations might be used in
of PRTV use day-to-day processing in a simplified library system. The library

might keep two permanent relations:

BOOKS(ACQ-NO,NAME:AUTHOR,NAME:TITLE)
LOANS(ACQ-NO,NAME:BORROWER,DATE:DATELOUT).

BOOKS would list all books owned by the library, with acquisi-
tion number (assigned by the librarian), author, and title. LOANS
would give the names of borrowers of books with a particular
acquisition number, as well as the dates on which the books
were taken out. Every day, three relations would be collected by
the data entry routine:

LOANS-TODAY(ACQ-N0,NAME:BORROWER)
RETURNS-TODAY(ACQ_NO)
NEW-BOOKS(ACQ-NO,NAME:AUTHOR,NAME:TITLE).

The end-of-day processing would be as follows:

1 LOGON LIB,LIB
2 BOOKS = BOOKS i- NEW-BOOKS
3 LOANS-TODAY1 = LOANS-TODAY H <DATE'741121>
4 LOANS = LOANS i- LOANS-TODAY1 - RETURNS-TODAY

294 TODD IBM SYST J 1

5 PUT BOOKS
6 PUT LOANS
7 LOGOFF

The librarian signs on in step 1. Step 2 is the updating of total
acquisitions by a union of books on hand and newly acquired
books. Step 3 adds the date (in this case, 21 November 1974)
to today’s loans, to provide complete information for the perma-
nent file. In step 4 the LOANS relation is updated by making ap-
propriate insertions and deletions. (This step does not allow for
books returned and taken out again the same day.) Since the
updates have been made in the workspace, steps 5 and 6 are
needed to enter them into the data base. When the librarian
signs off in step 7, temporary relations such as LOANS-TODAY1
are destroyed.

Not all details, such as the writing of user functions, are men-
tioned here, but the example indicates the advantages of PRTV
for quickly writing new data-base applications. The advantages
are even greater for nonstandard queries. Most queries can be
phrased in one or two statements. For example:

Query Who has taken out Persuasion?
ISBL LIST LOANS * BOOKS : TITLE=‘Persuasion’

Query What is the book by Austen about something-or-other
Abbey?

ISBL LIST BOOKS : AUTH0R”Austen’ * ISIN(‘Abbey’, TITLE)

Query What books by Austen are in at present?
ISBL IN = BOOKS - OUT

LIST IN : AUTHOR’Austen’

This example goes through an intermediate step. The relation IN
holds information about all the books that belong to the library
but are not currently on loan.

The example also illustrates the value of providing multiple
views using the bind-by-name facility. If questions of the type
“What books by Austen are in at present?” are anticipated, a
definition of the relation IN can be prepared in advance, as

IN=N!BOOKS-N!OUT.

Because IN is only defined using bind-by-name, it is not evaluat-
ed until required. Thus extra disk space is not needed, and up-
to-date values are obtained.

Implementation

PRTV is implemented in two major sections called the top end
and the bottom end (see Figure 3.) The top end is like an in-

NO. 4 * 1976 PRTV OVERVIEW

Figure 3 The implementation of
PRTV.

-L
GENERAL

EXTENSIONS

BOTTOM
EXTENSIONS

‘TAT1 =TUPLE AT A TIME

295

terpretive compiler. It deals with syntax analysis, naming of re-
lations, semantic checking of relation operations, and mecha-
nisms for escape to general user extensions. It also deals with
the presentation of relational files to the user program. The bot-
tom end is a suite of subroutines that deal with the handling of
records representing tuples. It is the bottom end that carries out
the hard work of operations such as union and join and the stor-
ing of large quantities of data. The bottom end also handles the
calling of tuple-at-a-time extensions. The interface between the
top and bottom ends is the Common Intermediate L,anguage
(CIL).

the CIL The CIL facilities form a record- and file-oriented access method
interface designed to make the implementation of an IsBL-type language

easy. The CIL user recognizes two basic data-set types: the
physical data set, or brick, and the logical data set, or stream.
Both appear as homogeneous sequential files. (Throughout this
section, user means the user of CTL. In the full PRTV system, this
user is the top end.)

All writing at the CIL level is done directly into a brick, and all
reading is done from a stream. The simplest form of stream al-
lows direct reading from a brick; but in general a stream is more
complex, allowing for reading from a union of two bricks, for
example.

One of the first things a CIL user does is write a set of records,
which are stored in a brick. When the entire set has been writ-
ten, the bottom end (on a CLOSE command) returns a numeric
identifier to the set-22, for example. The user can write as
many bricks as required, and for each, a unique numeric identi-
fier is assigned.

Streams are used to read back data stored in the data base. If
the user wishes to read back the data in a brick, a stream is
opened giving the brick identifier, and the user goes through the
records sequentially. The system also provides more complex
streams created by combining several bricks. For example, the
user writes a brick with identifier 45, as well as brick 22; all the
records from both bricks are to be read back. A stream is opened
giving the string S ~ 2 2 ~ 4 5 , which specifies the required set of
records, and the stream is read sequentially as before. The string
that specifies a stream is a cilstring.

A cilstring is a prefix Polish expression involving bricks and
streams. Seven basic operations are used to combine streams to
form new streams. Six correspond to the relational operations:
union, intersection, difference, selection, join, and reorder.
These operations work on ordered streams, not sets. There is an
important difference, which is most significant in the operation

296 TODD IBM s w r J

projection. A low-level projection can cause a need for a sort.
Therefore the low-level projection is given a different name,
reorder.

The seventh stream function (F) implements tuple-at-a-time
extensions; it reads through an input stream, and for each record
it passes the appropriate fields to the user function. It then either
constructs a new record with the returned computed fields in-
cluded, or decides, according to the predicate flag, whether or
not to pass the record to the output stream.

There is one special function, read (D), which converts a brick
to a stream by reading through the records.

All the above operations can be combined in an arbitrarily com-
plex manner to construct a stream from a set of bricks.

Following are some examples of cilstrings:

D22 brick 22
+D22D45 union of bricks 22 and 45
%D45C2E take second column only from brick 45
;+D22D45=C217E select from union of 22 and 45, where column

2 equals 7

In all cases, a brick is read using the read operation (Dl. If a
stream for a simple brick is required, the cilstring consists sim-
ply of the brick identifier prefixed by D.

The cost of creating a stream for a complex cilstring may be
great, so such a stream should not be recreated if the stream is to
be used several times. Therefore a command is provided in
PRTV to store the records of a stream in a brick. The command
accepts a cilstring and returns a brick identifier. Another com-
mand is provided for the deletion of bricks after use.

Character-string data are not held directly in bricks, but in sepa-
rate disk areas called value sets. Bricks contain pointers to the
value sets. For efficiency, distinct sets of character data are held
in different value sets. Commands are available to create and
destroy value sets, and the OPEN command for writing a brick
has a parameter that specifies which value sets are to be used.
Numeric data are not held in value sets.

The ISBL interpreter consists of six main components. As shown the
in Figure 4, they are the ISBL syntax analyzer, directory row top end
tines, user function control, relational semantic routines, rela-
tional file control, and optimizer. The top end is implemented

Figure 4 The top end of P R N is the ISBL interpreter, It has six main components, as
shown in the diagram.

USER

r""""- """"""""""_ I t 1 I
ISBL

SYNTAX
USER

FUNCTION
ANALYSIS CONTROL

I 1 I

RELATIONAL

I

RELATIONAL I
FILE

CONTROL
I
I
I m OPTIMIZER I I
I
!

STREAM I OPERATIONS RECORD I OPERATIONS

Incoming ISBL statements are analyzed by the ISBL syntax ana-
lyzer. Control statements such as LOGON, or the command to
transfer a relation to or from the data base, are passed to the
directory routines. Calls to user functions are passed to the user
function control, a small interface routine which ensures that the
required routine is properly linked and then translates parameters
and passes control to the user function.

Incoming assignment statements require calls to the directory to
resolve the names, then to the relational semantic routines to
check and compile the relational operations, and finally to the
directory to associate the result of the expression with the target.

The relational file control mostly translates Ism-level calls di-
rectly to their CIL equivalents, with some checking and conver-
sion. However, the command READ OPEN is presented with an
ISBL expression that has to be evaluated by the rest of the com-
piler. Similarly, WRITE CLOSE has to call the directory routines
to bind the brick to the required relation name.

The optimizer reorganizes cilstrings before they are submitted to
the bottom end. It carries out transformations that allow com-
plex streams to be more quickly evaluated. An example is re-
arranging a string so that selected operations are carried out as
soon as possible.

The design of the top end is fairly straightforward. The only
points of special interest are the use of complex mappings be-
tween relations and storage structures, and the function of the
optimizer.

298 TODD IBM SYST J

The values of relations stored in the directory are held in rela-
tion control blocks, each of which has two parts. One part is a
cilstring which can be passed to the bottom end to realize a set
of records. The other part, called a domain list, allows the top
end to interpret the records as tuples. The domain list contains
the degree of the relation, and, for each component, the domain
from which it is drawn and its data type.

The use of control blocks allows for complex mapping between
the user’s (relational) view and the storage (brick and stream)
view of data. It also simplifies the implementation of defined re-
lations, which are mappings between different user views.

The main directory, the relation index, is a mapping from the
user’s name for a relation to a location containing the relation
control block. The relational semantic routines act only on rela-
tion control blocks. They accept relation control blocks as pa-
rameters and use them to check the validity of the operation and
produce a relation control block for the result. When an assign-
ment is made, operations are carried out solely on the directo-
ries and relation control blocks, not on the bottom-end data.
Operations on bottom-end data are only carried out in four
cases: when the user lists the relation, when the user opens the
relation as a relational file, when the user asks for the cardinality
of a relation, and when the user explicitly requests that the rela-
tion be stored as a brick, using the command

KEEP <relation name>.

The delay in executing operations on bulk data is called deferred
operation.

The cilstring used in a relation control block is an extension of
the cilstring passed to the bottom end. It expresses the binding-
by-name capabilities of ISBL by including the name in parenthe-
ses. Thus the statement A=N!B+N!C creates the cilstring +(B)(c)
for A.

A set of stream operations often can be reorganized into another
set that gives the same result but takes less time to execute. For
example, usually it is quicker to make selections from two
streams and join the result than to join the streams and select
from the result. The optimization code reorganizes cilstrings
accordingly, carrying out the reorganization on a tree form of
the string.

Optimization includes the following activities:

Filters are moved as far down the tree as possible, causing
the selections to be executed as early as possible.

NO. 4 1976 PRTV OVERVIEW

Projections of projections are merged into one projection.

Projections involving sorts are moved as far toward the top
of the tree as possible, for latest possible execution.

Projections not involving sorts are moved as far toward the
bottom of the tree as possible.

Expressions involving several set operators are reorganized
according to such standard rules as commutativity and distri-
bution. The sizes of the bricks are used to optimize this reor-
ganization. Estimates are made of the sizes of the intermedi-
ate values. At present, no statistics are kept to help make
these estimates more accurate.

A search is made for common subtrees within the tree. The
common value may be realized as a brick, preventing dupli-
cation of the operations. Often the cost of creating a brick is
greater than the cost of repeating the operations, however, so
the optimizer estimates both costs and chooses the cheaper
alternative.

The optimizer also chooses among alternative implementa-
tions of the relational operations. For example, the operation
join can be implemented as either a collate or a double
l00p.~’ The collate is quicker but requires suitably sorted
input. If the input data are not sorted, the optimizer chooses
whether to sort and merge them or to use the double-loop
implementation. Another choice may be possible with selec-
tion, which sometimes can be implemented using indices held
for bricks.

In future, the optimizer will handle the use of secondary in-
versions for both selections7 and join^.^' s

Figure 5 The bottom end of PRTV contains subroutines that hondle records represent-
ing tuples.

I T I
CREATION

I

I CONTROL RECORD I I TRANSLATE I

READIWRITE READIWRITE VALUE SET

OPENICLOSE
I

FIELOIRECORD
I

CREATEIDESTROI

r i
STREAM

OPERATIONS
BRICK
WRITE

""ONE STREAM OPERATION CALLS TUPLE AT-A-TIME EXTENSIONS

The bottom end of PRTV (see Figure 5) is implemented in a
mixture of PL/I and System/370 assembler language. The follow-
ing discussion covers the format of the major data structures-
the brick and the value set -and then outlines their use in pro-
viding CIL interface functions. The discussion is intended not to
give full details, but only to outline major points.

A brick is a stored sequential file. Techniques that make for the
efficient storing and retrieving of bricks include the use of a stan-
dard format, the blocking of data, the sorting, suppression, and
compression of data, and the use of page indices. Records are
stored in a standard format throughout the bottom end to simpli-
fy access and manipulation routines. Blocking is intended to
reduce the number of disk accesses. Sorting makes the execu-
tion of stream operations more efficient, and it allows for the
suppression of duplicate leading fields. Data compression, ap-
plied on a field-by-field basis, recovers space lost in the some-
times apparently extravagant use of the eight-byte format. Page
indices provide for faster access in the major sort field.

Partial inversions are being implemented in the form of binary
bricks between the value in a given field and the identifiers of
records containing that value.

Blocking is designed to save disk access time. The first record
on each page is written in full at the head of the page. The page
size is chosen when a data base is first formatted. The remaining
records are suppressed and compressed and written sequentially
onto the page until no more will fit. This procedure allows from
one to more than 1000 records to be stored on a page.

NO. 4 . 1976 PRTV OVERVIEW

the
bottom
end

bricks

30 1

I Figure 6 An example of data compression as carried out in PRW, showing how the
value 257 is compressed against the value 515.

257

515

EOR 1 00000000 1

RESULT 1 01 100000 1

1

I

I

I 0100001 I I

I 0100001 1 I

I
bit map

Permanently stored bricks are always sorted. The only bricks
that are not sorted are those that have just been written by the
CIL user. They are always sorted before being made permanent.

000 10000

00 100000

00 1 10000

00 1 10000
I

000 10000

00 1 10000

00 100000

00 100000
I

non-zero bytes

00000000

00000000

00000000

I . . .

I . . .

I . . .

Data suppression is intended to eliminate CPU and rlo time and
storage associated with certain redundant data. In each record,
leading fields are suppressed if they are identical to the corre-
sponding fields of the previous record. The remaining fields are
preceded by a value denoting the number of fields explicitly
held. For example, consider a file of degree 3:

1 1 1
1 1 2 I

In this case, only the following fields would be held:

1 1 1
I 2 -
- 2 2 2
- 3 2 1 2

The underscored values above indicate the number of fields.

Compression is carried out as follows: The first record in each
block is stored complete, but in subsequent records, fields that
have not been suppressed are compressed against the corre-
sponding fields of the first record. This is done by an exclusive
OR of the values in the two records. If the values are similar, the
result will contain several zero bytes. A bit map indicating the
zero bytes is stored, followed by the nonzero bytes. An example
is shown in Figure 6, where the value 257 is compressed against
the value 5 15.

Compression is needed because of the eight-byte format. The
technique used in PRTV was chosen to give good results with
small integers and value-set indentifiers.

Page indices are designed to provide fast access for certain
selection operations. The data pages of a brick are held in an

302 TODD IBM S Y S T J

I value
sets

array, along with the value of the first field in the first and last
records on each page.

Relations often have to hold character-string values. In PRTV
these values are not held in the stream representation of the re-
lations, but are stored on disk in value sets. The stream contains
an identifier for the value. This system has the following advan-
tages:

records in a stream are of fixed length;

long character strings are held only once in the system, so
only their identifiers are duplicated if several bricks contain
the same string.

On the other hand, the use of value sets has the following disad-
vantages:

the manipulation of character strings is inefficient if they are
used in only one brick;

stream operations for such functions as substring tests are
inefficient because they do not have convenient access to the
values;

it is difficult to present a properly sorted relational file unless
the value-set identifiers are arranged to sort in the same or-
der as the strings they represent;

it becomes difficult to tell when a character string is no long-
er in use by any brick, and thus to purge it from the system.

PRTV stores one value set for each domain of character data
type created by the user, thereby establishing several small val-
ue sets instead of one large one. The advantage is speed of ac-
cess from identifier to value and vice versa. Having several
small value sets, however, makes retrospective merging of do-
mains very expensive, and this operation is not supported in
PRTV.

The current PRTV value-set scheme is based on unbalanced
trees with implicit identifiers. This scheme is biased toward val-
ue-at-a-time retrieval of values from identifiers and does not
maintain a helpful Sort order of identifiers. The identifiers take
up six bytes, an unnecessarily large amount of storage that is
often reduced by compression. Short values are not indirectly
coded but are held in the eight bytes with one byte reserved for
the length.

NO. 4 1976 PRTV OVERVIEW 303

application, operations have to be carried out on the explicit records. These
stream are called stream operations. Six of them correspond to the sup-

operations ported relational operations, one invokes tuple-at-a-time user
extensions, one is a read operation, and one is a sort. Each
works on a node of a tree using input from the subnodes. At the
bottom of the tree are the nodes for the read operation, which
simply reads records (usually sequentially) out of bricks.

Figure 7 Example of a tree, TO use the stream operations, a tree must be set UP first, and
showing CIL ;+D15D22 then the operations invoked. The operations take data from the

data base at the leaf nodes, and the data flow up the tree, the final
result appearing at the top (see Figure 7) .

The realization of the set of tuples at the top of a tree is the ex-
plication of the tree. As the tree is set up, certain operations are
performed to make its explication more efficient. For example,
filters are converted to forms that are easier to apply. Each node
of the tree contains pointers to subnodes, filters, and so on.
There is also space for the current record.

In most cases, stream operations take sorted input and develop
sorted output, making it unnecessary to fully realize the inter-
mediate streams that are passed from one node to another. Rec-
ords then can be passed up the tree a few at a time, as requested
by the upper node. PRTV does this whenever possible.

Sometimes intermediate streams do have to be fully realized and
stored, as in a reorder, which does not necessarily produce sort-
ed output. The output must be fully worked out and sorted be-
fore any records are passed up the tree. A node where an inter-
mediate stream must be explicated is called a break point of a
tree.

=ClCJE.

= ClC3E

The code that carries out the conversion from CIL to tree is
quite straightforward, as is that which carries out the stream
operations. No details are included here.

basic The simplest bottom-end operation is writing a brick. The OPEN
operations command creates a control block which is used to identify the

of the brick being written. As each record is entered, it is translated
bottom end using value-set conversion for characters. This procedure puts it

into the standard form for writing a brick. The brick is sorted, if
necessary, when writing is closed.

Reading a stream and converting a stream to a brick require the
building of a tree. In reading, the tree is built when the stream is
opened. The records are explicated using the tree, then trans-
lated to user format before being passed out of the bottom end.

304 TODD IBM SYST J

When a stream is converted to a brick, the explicated records
simply are written to the brick without the need for value set
translation.

PRTV background

PRTV is based on the concise, formal definition of relations pro-
posed by Hall, Hitchcock, and Todd.3 It is from that definition
that the terms selector and component, as used in this paper, are
taken. The definition proposed by Hall et al. solves problems of
role names and domain name inheritance discussed by Codd’
and clears up the confusion resulting from his use of domain for
both underlying set and component of a relation.

Two other features of PRTV were discussed by Hall et al. The
use of a relation as the graph of a procedure is the basis of the
tuple-at-a-time extension; and the equijoin and generalized dif-
ference operations are based on operations described by Hall et
al. These operations are more convenient than the operations
used in most forms of the relational algebra.

The use of normal forms is discussed by Codd.” PRTV under-
stands tuple elements only as atomic objects; it is possible for a
general extension to use objects as relation names and thus to
simulate a violation of first normal form. A system cannot check
for third normal form, as that form is only an intensional property.
It is recommended that users of PRTV keep their relations in
third normal form in most cases.

The optimization carried out by PRTV was first suggested by
M. G. Notley, but the details are the work of Hall.’ Similar ideas
have been proposed by Smith and Chang.”

Work of an entirely different nature on optimization of relational
expressions has been done by Astrahan and Chamberl i~~,~ who
considered using inversions to optimize a smaller class of que-
ries. It is hoped to include some of the results of their work in
PRTV.

Current work at Peterlee is being directed toward optimization
on the data-base scale rather than on the scale of a single query.”
This optimization will not be entirely automatic; a data-base
administrator interface is anticipated. Commands through the
interface will affect only the efficiency of queries and programs,
not the results obtained.

There are no particularly novel features in the file structures of
PRTV. The implementation of bricks is much more conventional
than the structures used in many “relational” access methods.13

NO. 4 * 1976 PRTV OVERVIEW

PRTV provides convenient exits so a user or system administra- extensibility
tor can extend the function of the system. Extensions can make
use of both relational views and more conventional sequential-

I file views of data. PRTV’S extensibility enables the system to be
used in a wide range of data-base applications.

PRTV does not try to imitate the relational view of data directly a multilevel
at the storage level, and there is not a simple correspondence system
between relations and the stored files. Therefore the system can
be implemented using efficient filing techniques such as sorting,
compression, and indexing, without burdening the user with
storage details.

Optimizing-compiler techniques aid in the efficient execution of optimization
apparently complex operations. Thus the user need not specify
an especially efficient solution to his problem, but rather a con-
venient and readable one. Associated with the flexible file struc-
tures in PRTV is the use of trees to represent particular combina-
tions of structures. The trees drive the explication of entire sets
of tuples, so decisions on access paths can be made at a late
stage, and optimization is based on the best data. At the same
time, the use of trees reduces the number of decisions to be
made as each record is processed.

ACKNOWLEDGMENTS

Many persons have been involved in coding the prototype, espe-
cially Alan Morrish, James Considine, and Patrick Hall. These
and many others have assisted in the associated research.
Terrence Rogers has managed the project throughout and has
made many suggestions concerning the research, the prototype,
and this description. The ideas received from the users of the
system have been welcomed most of all.

CITED REFERENCES
1. E. F. Codd, “A relational model of data for large shared data banks,” Com-

munications of the ACM 13, No. 6, 377-387 (1970).
2. M. G . Notley, The Peterlee IS/] system, IBM UK Scientific Centre Report

18, Peterlee, England (1972).
3. P. A. V. Hall, P. Hitchcock, and S. J. P. Todd, “An algebra of relations for

machine computation,” Conference Record of the Second ACM Symposium
on Principles of Programming Languages (Palo Alto), 225-232 (1975).

4. S. Mandil, The M P / 3 Macroprocessor, IBM UK Scientific Centre Report
44, Peterlee, England (1973).

5. S. J . P. Todd, Implementation of the join operator in relational data bases,
IBM UK Scientific Centre Technical Note 15, Peterlee, England (1974).

6. L. R. Gotlieb, “Computing joins of relations,” Proceedings, ACM SIC-
MOD International Conference on Management of Data (San Jose), 55-
63 (1975).

7. M. M. Astrahan and D. D. Chamberlin, “Implementation of a structured
English query language,” Communications of the ACM 18, No. IO, 580-
588 (1975).

I NO. 4 . 1976 PRTV OVERVIEW 307 I

308 TODD

