
A high-level  data-base  system,  the  Peterlee  Relational  Test  Ve- 
hicle ( PR T v ) ,  provides  flexible,  interactive  data-base  support  and 
functional  extensibility.  The  user  sees  the  system  primarily 
through  a  programming  language  called I S B L ,  which is designed 
for manipulating  bulk  data  held  in  relations. P R T V  is  not  a  full- 
fledged  data-base  system,  but  rather  an  evolving  prototype 
which  is  expected  to  aid  in  solving  some of the  problems  that 
have  been  encountered  in  using  relational  data  bases. P R T V  
embodies  research  both  in  data-base  language  design  and  in 
eficient  implementation  techniques. 

The Peterlee  Relational  Test Vehicle-a system  overview 
by S. J. P. Todd 

A high-level data-base  system is one in which applications are 
expressed in a language meaningful to  the  user, and in which data 
are represented  and manipulated in a natural way. At IBM’S 
United Kingdom Scientific Centre in Peterlee,  County  Durham, 
a major research aim  is to understand  the  problems  associated 
with designing and using such  systems  for  general  applications. 
A number of software  prototypes  have been implemented to  test 
various designs. One of those  prototypes,  the  Peterlee Relation- 
al Test Vehicle (PRTV), is the  subject of this  report, which 
covers  both internal and  external  features of particular  interest 
in data-base  systems design. 

PRTV is not a full-fledged data-base  system; many features  es- 
sential  to  such  a  system,  such as backup  and  recovery,  have  not 
been implemented. This  report is intended to  address problems 
of greater significance than PRTV itself, however, and it  is be- 
lieved that continued work with the evolving prototype will 
provide  answers  to some of those problems. Indeed, it  is  likely 
that  one  outcome of the  continued  use of PRTV will be  that more 
problems will become  apparent. 

PRTV is an interactive  data-base  system intended to be used ei- 
ther  as a stand-alone  system  for simple data  bases or  as a data 
subsystem  for an applications system.  The main objectives  are 
high-level, flexible data-base  support and functional extensibili- 
ty. High-level support is provided by concepts  based  on  the rela- 
tional model. To give maximum flexibility in using the  data 
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base,  relations are treated as named variables by the  user lan- 
guage, ISBL (Information  System Base Language).  New rela- 
tions can be created and assigned at will. Extensibility is provid- 
ed by allowing user  written PL/I functions  to  be  added  to the sys- 
tem. PRTV also  has a flexible method for defining multiple views 
of data. 

PRTV is designed for efficiency  in that  instead of each  user rela- 
tion having its own file, there is flexibility in mapping between 
system files and  user  relations.  This design allows greater  free- 
dom in the  storing of data,  and it allows the  system  to implement 
user  requests  more efficiently by reordering  commands  and 
choosing the most suitable  access  paths. 

The system is modular, so small pieces can be changed in order 
to  test new ideas.  In  addition, all routines  that  deal with the 
world outside the PRTV system-the  operating  system, termi- 
nals,  card  readers,  printers,  and disk r/o -have  been implement- 
ed as small utility routines  that can be  converted readily for 
different operating systems and devices. 

Use of the relational model as a formal background to high-level 
data  bases was proposed by Codd,' who also  discussed  the rela- 
tional algebra. Among the first implementations was  the IS/I sys- 
tem at Peterlee.' PRTV is based on experience with that  proto- 
type. 

Concepts and facilities 

The  user  sees  the PRTV system principally through the  Informa- 
tion System  Base Language (ISBL), which is designed for manip- 
ulating bulk data held in relations. It provides for  variables, 
expressions, and assignments in much the  same way as  do  con- 
ventional programming languages such  as PLII. All variables 
denote  relations,  and the only operations  that  can be uscd in 
expressions  are  those  that  produce relational results. 

In addition to assignment statements, ISBL provides control 
statements  for creating new domains, sharing relations among 
users,  and similar functions. For cases  that  cannot  be handled 
by a relational algebra operating  on  stored  relations, ISBL per- 
mits escape  to previously linked PL/I extensions. There  are stan- 
dard  extensions  for  the  entering and listing of relations and for 
the basic  arithmetic  and  string  operations. A user  can  add  other 
extensions  as  required. These extensions  can  themselves issue 
ISBL statements; they can also access  data from a relation. 

ISBL does  not  have flow or control  statements  such  as DO WHILE 
or GO TO. 
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Figure 1 Relations can be thought  of a s  tables. This example represents the  informa- 
tion  that book number 5 i s  Austen's Persuasion, and number 7 is Goethe's 
Faust. 

~ 

ACQ-NO 

4 DOMAIN NAMES NAME  NAME ACQ-NO 

4 SELECTORS TITLE AUTHOR 

t I I 1 

The basic  units  understood by PRTV are called objects. Objects structures 
are grouped  into  sets called domains, each of which has a name. 
For example, in a  library application there might be a domain 
called NAME, consisting of the  titles of books  and  the  names of 
authors  and  borrowers, and there might be another  domain, 
ACQ-NO, consisting of acquisition numbers. 

Every  object is held in the  system as either  numeric or  character 
data  and is said to have data type N or C. All objects in a  do- 
main must  have  the  same  data  type, which then is the data  type 
of the  domain.  A new domain can  be  created at any time. For 
example,  the ISBL statement 

CREATE DOMAIN NAME, C 

would be used to  create  the domain called NAME with data  type 
C (character  objects). 

Information  connecting  the  objects is held in relations. A rela- 
tion is like a table, as shown in Figure 1. This  relation  represents 
the information that  book  number 5 is Austen's Persuasion, and 
number 7 is Goethe's Faust. Each row of the  table is a tuple of 
the  relation, and each column is a component. All elements in a 
column must  be  drawn from the  same domain. The list of com- 
ponents from which the  objects of a tuple or relation are drawn 
is the relation type ( or simply t-ype) of the  tuple or relation. 

A relation can  be assigned to a named variable,  but  intermediate 
values in expressions  can be left unnamed. The relation dis- 
cussed  above might be called BOOKS. 

Each  component of a relation is identified by a name called a 
sefector. Often  the  selector is the domain name, but when the 
same domain underlies several  components,  the  selectors  must 
differ from the domain name. Usually  the  domain  names are not 
included in the  tabular  representation (see Figure 2) .  

Figure 2 In a relation,  the  order 
of tuples and compo- 
nents is arbitrary. The 
table shown below  rep- 
resents the same rela- 
tion as the table  in 
Figure 1. The  domain 
names are omitted; only 
the selectors are  shown. 

Persuasion 5 Austen 
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Projection (%) also  acts  on  one  relation  to  produce  another. For 
each tuple in the original, the  result  contains  a  tuple with the 
components renamed or only some components  present.  A 
projection  list specifies the  selection of components  and  their 
new names. It contains  selectors from the  input  relation,  each 
optionally qualified by a new selector for the corresponding 
component in the resulting relation. To rename  some  compo- 
nents  and  leave  the  remainder as before,  a  list is given of the 
selectors  to be changed with their new names, followed by, . . . 
(meaning and so on) .  For example: 

BOOKS % AUTHOR,TITLE 
BOOKS % AUTHOR - >WRITER,TITLE 
BOOKS % AUTHOR - >WRITER,. . . 
The first expression  creates  a relation of degree 2 with selectors 
AUTHOR and TITLE. The relation denoted by the  second  expres- 
sion is similar except  that  the AUTHOR component is renamed 
WRITER. The third expression yields a relation similar to books, 
but with the AUTHOR component renamed as in the second. 

Because  two  distinct  tuples of the  input  relation may become 
identical on  projection,  the cardinality of the result of a  projec- 
tion may be smaller than  the cardinality of its  input. This effect, 
a natural  result of the  set-theoretic  nature of relations, is akin to 
the purging of files. 

The operations union (+), intersection (.), and dference (-) 
depend  on  the relation as a  set of tuples.  Each  operates  on  two 
relations to produce a third. The result of a union is a  relation 
that  contains all the tuples  appearing in either  operand.  An in- 
tersection  produces a relation containing only tuples  that  appear 
in both operands. In  either operation,  the  input  relations  must be 
of the  same  type, which becomes  the  relation  type of the  result. 
For example,  the  statement 

BOOKS f NEW-BOOKS 

produces  the  set of tuples for all books now in the  library,  and 

BOOKS . NEW-BOOKS 

produces a set  containingdnly  tuples from the  relations BOOKS 
and NEW_BOOKS. 

The operation difference finds tuples in the first relation for 
which there is no tuple in the  second relation that  matches in the 
components with matching selectors. The result is called a d$- 
ference on  the  common  selectors. (When all the  components 
match for  the  relations, this operation becomes the  conventional 
relational difference.) For example, a library has the relation 

LOANS(ACQ-NO, NAME:BORROWER, DATE:DATELOUT). 
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Then  the  statement 

BOOKS - LOANS 

produces a difference on ACQ-NO. It gives the acquisition num- 
ber,  author,  and title of  all books  not  currently  on loan. 

The final operation, join (*  ) , also  produces a new relation from 
two  operand  relations. In  the most  extreme  case,  every tuple in 
the first relation is paired with every  tuple in the  second. For 
each  pair, a new tuple is created with all the  objects from both 
tuples. This is called a concarenation of the contributing  tuples. 
All these new tuples  together form the  result of the  join. The 
cardinality of the result is the product of the  cardinalities of 
the  input  relations,  and  the  degree of the result is the sum of the 
degrees of the  inputs.  This form of join is a full quadratic join. 

More  common is the natural join, or equijoin. If selectors  from 
the  two  relations  match,  tuples  are  put  into  the  result only if the 
values  for  those  selectors in the  contributing  tuples  also match. 
The concatenated  tuple holds only one  occurrence of the  selec- 
tor, which contains  the  common value. The result is a join  on 
the  common selectors. Its cardinality can be any  value from 
zero  to  the  product of the input cardinalities. The degree of the 
result is the sum of the  input  degrees  less  the  number of match- 
ing selectors. When the  two relation types  are  the  same,  an equi- 
join  degenerates  into an intersection. In the library example, the 
statement 

BOOKS * LOANS 

produces a join on ACQ-NO, combining information from both 
relations  about  the  books on loan. The result is a relation of de- 
gree 5 with selectors ACQ-NO, AUTHOR, TITLE, BORROWER, and 
DATELOUT. 

The automatic matching of selectors in the  join  and difference 
operations  sometimes  associates  selectors that  are required to 
be different, or fails to  associate  those  that should be  associated. 
The rename option of the projection  operation is used to over- 
come  this problem. To find pairs of books  by  the  same  author, 
for  example, the  author/title  part of BOOKS is joined to itself on 
author. To avoid joining on title, the title components are  re- 
named TITLEl and  TITLE^. This  operation gives triples of author 
with two  titles, from which the  tuples with identical titles are 
eliminated. In ISBL, the  operation  appears as follows: 

(BOOKS%AUTHOR,TITLE - > TITLEI) * 
(BOOKS%AUTHOR,TITLE - > TITLE2) : TITLEl 1=TITLE2. 

user Relational operations  provide a convenient  method of manipu- 
extensions lating and  coordinating  data,  but  they are incapable of carrying 

out  computations.  Also,  a  data  base  cannot  provide listing and 

290 TODD IBM SYST J 



data-entry  services precisely tailored to  user  requirements. 
Rather than incorporating these  services  into ISBL, PRTV pro- 
vides mechanisms for  escape  to  two  types of user  extensions. 
One  acts  on a single tuple at a  time;  the  other allows actions 
across  sets of tuples.  Tuple-at-a-time  extensions are simpler to 
write, and  they  operate more efficiently, but they are not so 
powerful as general extensions. 

Procedures  are provided in PRTV to simplify the linking of new 
user  extensions  into the system. For a tuple-at-a-time extension, 
the  user  enters  the  names  and  data  types of the parameters  and 
the body of the PL/I code. The PL/I code is completed  automati- 
cally by the addition of the procedure  and  declare  statements  for 
the  parameters. Then it is compiled and linked into  the  system, 
and the directory of functions is updated. 

Tuple-at-a-time extensions are used for  two kinds of operation: 
providing computed fields and providing user defined selection 
criteria. The user  writes  a PL/I program that  accepts  as  input 
only the  appropriate  elements from a single tuple. It returns ei- 
ther  the  computed  elements or a flag (the predicate j a g )  indi- 
cating whether  the  tuple satisfies the  criteria. PRTV chooses  the 
elements  to  be passed to  the  function from the tuple according 
to  the ISBL statement  used  to invoke it,  and it provides  the  con- 
trol to call the function for  each tuple of a  relation.  An  example 
is the PL/I procedure ISIN: 

ISIN: procedure (a,b) returns (bit); 
declare (a,b) character (* ) : 
declare predicatedag  bit; 

.predicate_flag = (index (b,a) 1=0); 

return (predicate-flag ) ; 
end; 

The last  three lines are  the only ones  entered by the  user. This 
procedure  returns  true only if character string a occurs in string 
6.  Its use in ISBL is illustrated by the  statement 

LIST  BOOKS * ISIN('RelatiOn',TITLE) 

which selects  books with the  character string Relation in their 
titles. 

LIST BOOKS * ISIN(AUTHOR,TITLE) 

is an  expression  that might be used by egocentric  authors. 

A computed field might be provided by a function DUE, which, 
given the loan date of a  book, would return  the  due  date. Then 
the  statement 

LOANS * DUE(DATEL0UT I DATE:DATE-DUE) 
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and DATELDUE. (The input and  output  parameters  are  separated 
by 1 ,  and  for  the  output,  both  the domain (DATE) and  selec- 
tor (DATEDUE) must be given.) The join  notation is important, 
since ISIN is a procedure  whereas ISIM(AUTHOR,TITLE) is a rela- 
tion with selectors AUTHOR and TITLE (Hall  et  ai.3). 

general General  extensions call the ISBL interpreter  recursively, or they 
extensions use the relational file interface  to  access  and write data-base 

data  one object  at a time. They  are used for  interaction with the 
outside world (listing, data  entry), for  computations  across  tu- 
ples (subtotal), and  for  macro-type  operations (definition of di- 
vision in terms of other relational operations).  Character strings 
are passed  into  the PL/I program from the ISBL interpreter. 
These strings  can be treated in any  way-for  example,  as  a  rela- 
tion name or  as a list of selectors. 

The standard  system utility ENTER accepts  as  parameters  the 
name of a relation to be entered  and  the  components it is to be 
given. The ISBL call to  enter  the BOOKS relation is 

CALL ENTER(BOOKS IACQ_NO,NAME:AUTHOR,NAME:TITLE). 
Another  extension is SUBCOUNT, which counts  the  occurrences 
of tuples for each  value in a set of components. For example, 
the  statement 

CALL SUBCOUNT(LOANS~BORROWER~RESULT) 

assigns to RESULT a  relation giving the number of books  that 
each  borrower  currently  has  on  loan. 

relational Relational files are used to move  data  between  the data  base  and 
files a program. There  are  two kinds of relational file: 

A relational r e a d j l e  is a “snapshot” of the  data in a relation. 
The tuples  are  ordered  and the file has a cursor. A relational 
expression  can be turned  into a file, in which case  the  tuples 
are transferred one  at a  time from the file to the program. 

A relational  write  file is used for transforming data from PL/I 
into  the data base. The file is written tuple by  tuple,  and 
when the file  is closed,  it is given a  name and turned  into a 
relation. 

It is important  to  note that relations, relational read files, and 1 

relational write files are all distinct.  A  tuple  cannot  be  read from 
a relation,  for  example,  nor  can a relational write file take  part in 
a union. 

General  extensions  can  also  create  and manipulate relations us- 
ing ISBL. An ISBL statement is built up in the program, then 
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submitted to  the system  recursively using the PL/I statement 
CALL XEQ. General  extensions  that  are included as standard 
in PRTV are LIST, ENTER,  SUBTOTAL, and DIVIDE. 

Other  points of especial  interest in the  use of PRTV are dis- other 
cussed below: features 

of PRTV 

Update. ISBL does  not  have  an  update  capability in the nor- 
mally accepted  sense,  but  the value of a  relation variable can 
be  changed by an assignment into it. For  example,.the  state- 
ment A = A + s would insert a set (s) of tuples  into a rela- 
tion (A). 

An  update  that is equivalent  to changing a field  of a  record 
can  be accomplished only by using complicated expressions, 
or by PL/I extensions using relational files. An  update  capa- 
bility eventually should be modeled at  the ISBL level. At pre- 
sent,  the implications beyond simple CHANGE or INSERT 
commands are not fully understood, so no update facility has 
been implemented. 

Workspace. When a user signs on, PRTV gives him an empty 
workspace. The workspace is a temporary  (one-session) 
association of relation identifiers with user  names. The 
names  can be loaded explicitly from the user’s workspace 
index,  but  they will be  loaded implicitly if a  referenced vari- 
able is not in the  workspace.  Unless the  user explicitly re- 
quests  that  a  change  be  made  permanent,  the  result of any 
update  or assignment will be limited to  the workspace. Thus 
the  workspace  provides  a  convenient  means of testing possi- 
ble changes  without altering the operational  data.  Work- 
spaces  cannot be saved from one  session  to  another, as they 
can in APL. 

Multiple users. ISBL enables different users  to  work with the 
same  data,  each having access  to different parts of the  data. 
When a user signs on, he gives his name and a password  to 
identfy a  set of named relations belonging to  that user.  New 
relations  created  are  private,  but they can be shared explicit- 
ly with other  users.  Concurrent use of a single data  base  by 
many users is not  supported. 

Variable binding. When a variable is used in an expression, 
ISBL allows binding both by value and  by name. 

Binding by value is the default binding: the  current  value of 
the named relation is found and inserted  into  the  expression. 
If the expression is used in an assignment, any  subsequent 



a change of value in the assigned relation. The effect is the 
same  as  the  use of a variable on  the right-hand side of an  as- 
signment in P L ~ .  

If an expression specifies binding by name, the named rela- 
tion is not  evaluated at  the time. Instead, its name is held in a 
procedure which represents  the  expression. If the  expression 
is used in an assignment, any  subsequent  change of value in 
the  relation bound by name is reflected as a change of value 
in the assigned relation. The relation bound by name is thus 
evaluated  whenever  the assigned relation is used. Binding by 
name can provide different (read-only) views of the  same 
data. For example, with the  relations BOOKS and LOANS, the 
expression 

FULL-LOANS = N!BOOKS H N!LOANS 

causes  changes in BOOKS or LOANS to  be reflected automati- 
cally in FULL-LOANS. Relations  such  as FULL-LOANS, whose 
values  depend  on  the values of  other  relations, are called de- 
lined  relations. 

Excluded  features. PRTV does  not  attempt  to  provide rela- 
tional calculus or interfaces  for inexperienced users,  nor 
complex data-entry or report-generation  features,  nor  nonre- 
lational views of data  other  than relational files. All of these 
features  can  be provided by  systems using PRTV as a subsys- 
tem.  Integrity  and  backup  features are also excluded. 

examples The following example  shows how relations might be used in 
of PRTV use day-to-day  processing in a simplified library  system. The library 

might keep  two  permanent  relations: 

BOOKS(ACQ-NO,NAME:AUTHOR,NAME:TITLE) 
LOANS(ACQ-NO,NAME:BORROWER,DATE:DATELOUT). 

BOOKS would list all books owned by  the  library, with acquisi- 
tion number  (assigned by the  librarian),  author,  and title. LOANS 
would give the  names of borrowers of books with a particular 
acquisition number,  as well as the  dates  on which the  books 
were  taken  out.  Every  day,  three  relations would be collected by 
the  data  entry routine: 

LOANS-TODAY(ACQ-N0,NAME:BORROWER) 
RETURNS-TODAY(ACQ_NO) 
NEW-BOOKS(ACQ-NO,NAME:AUTHOR,NAME:TITLE). 

The end-of-day processing would be as follows: 

1 LOGON LIB,LIB 
2 BOOKS = BOOKS i- NEW-BOOKS 
3 LOANS-TODAY1 = LOANS-TODAY H <DATE'741121> 
4 LOANS = LOANS i- LOANS-TODAY1 - RETURNS-TODAY 
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5 PUT BOOKS 
6 PUT  LOANS 
7 LOGOFF 

The librarian signs on in step 1. Step 2 is the updating of total 
acquisitions  by a union of books  on hand and newly acquired 
books.  Step 3 adds  the date (in  this  case, 21 November 1974) 
to today’s loans, to provide  complete information for  the  perma- 
nent file. In step 4 the LOANS relation is updated by making ap- 
propriate  insertions and deletions.  (This  step  does  not allow for 
books  returned  and  taken  out again the  same  day.)  Since the 
updates  have been made in the  workspace,  steps 5 and 6 are 
needed to  enter  them  into  the  data  base. When the librarian 
signs off in step 7, temporary  relations  such as LOANS-TODAY1 
are  destroyed. 

Not all details,  such as  the writing of user  functions, are men- 
tioned here,  but  the  example  indicates  the  advantages of PRTV 
for quickly writing new data-base applications. The advantages 
are  even  greater  for  nonstandard  queries.  Most  queries  can  be 
phrased in one  or  two  statements. For example: 

Query Who has  taken  out Persuasion? 
ISBL LIST LOANS * BOOKS : TITLE=‘Persuasion’ 

Query What is the book by Austen  about something-or-other 
Abbey? 

ISBL LIST BOOKS : AUTH0R”Austen’ * ISIN(‘Abbey’, TITLE) 

Query What  books by Austen  are in at present? 
ISBL IN = BOOKS - OUT 

LIST IN : AUTHOR’Austen’ 

This  example goes through an  intermediate  step. The relation IN 
holds information about all the books  that belong to  the  library 
but  are  not  currently  on  loan. 

The example also illustrates  the  value of providing multiple 
views using the bind-by-name facility. If questions of the  type 
“What  books by Austen  are in at present?” are anticipated,  a 
definition of the relation IN can  be  prepared in advance, as 

IN=N!BOOKS-N!OUT. 

Because IN is only defined using bind-by-name, it is not  evaluat- 
ed until required. Thus  extra  disk  space is not  needed,  and up- 
to-date  values  are  obtained. 

Implementation 

PRTV is implemented in two major sections called the top end 
and  the bottom end (see Figure 3.) The top  end is like an in- 
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terpretive compiler. It deals with syntax  analysis, naming of re- 
lations,  semantic checking of relation operations,  and mecha- 
nisms for escape  to  general  user  extensions. It also  deals with 
the presentation of relational files to  the  user program. The bot- 
tom end is a suite of subroutines  that  deal with the handling of 
records  representing  tuples. It is the  bottom end that  carries  out 
the hard work of operations  such  as union and  join  and  the  stor- 
ing of large quantities of data. The bottom  end  also handles the 
calling of tuple-at-a-time extensions. The interface between the 
top  and  bottom  ends is the Common Intermediate L,anguage 
(CIL). 

the CIL The CIL facilities form a record- and file-oriented access method 
interface designed to make  the implementation of an IsBL-type language 

easy. The CIL user  recognizes  two  basic  data-set  types:  the 
physical  data set,  or brick, and  the logical data  set, or stream. 
Both appear  as homogeneous sequential files. (Throughout this 
section, user means  the  user of  CTL. In  the full PRTV system, this 
user is the  top  end.) 

All writing at  the CIL level is done  directly  into  a  brick,  and all 
reading is done from a  stream.  The simplest form of stream al- 
lows direct reading from a  brick;  but in general  a  stream is more 
complex, allowing for reading from a union of two  bricks, for 
example. 

One of the first things a CIL user  does is write  a set of records, 
which are stored in a brick. When the  entire  set  has  been writ- 
ten,  the  bottom  end  (on  a CLOSE command)  returns  a numeric 
identifier to  the set-22, for  example. The user can write as 
many bricks  as  required, and for  each,  a unique numeric identi- 
fier is assigned. 

Streams  are used to  read  back  data  stored in the  data  base. If 
the  user wishes to  read  back  the data in a brick,  a  stream is 
opened giving the brick identifier, and  the  user goes through  the 
records  sequentially. The system also provides  more complex 
streams  created by combining several bricks. For example,  the 
user  writes a brick with identifier 45, as well as brick 22; all the 
records from both bricks are  to  be read  back. A stream is opened 
giving the string S ~ 2 2 ~ 4 5 ,  which specifies the  required  set of 
records,  and  the  stream is read sequentially as before. The string 
that specifies a stream is a cilstring. 

A cilstring is a prefix Polish expression involving bricks  and 
streams.  Seven  basic  operations  are used to  combine  streams  to 
form new streams. Six correspond to  the relational operations: 
union,  intersection, difference, selection,  join,  and  reorder. 
These operations  work  on  ordered  streams,  not  sets. There is an 
important difference, which is most significant in the  operation 
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projection. A low-level projection can  cause a need for a sort. 
Therefore  the low-level projection is given a different name, 
reorder. 

The seventh  stream function (F ) implements tuple-at-a-time 
extensions; it reads  through  an  input  stream,  and  for  each  record 
it passes  the  appropriate fields to  the  user  function. It then  either 
constructs  a new record with the  returned  computed fields in- 
cluded, or decides,  according to  the predicate flag, whether  or 
not to pass  the  record to the  output  stream. 

There is one special function,  read (D), which converts a brick 
to a  stream  by reading through the  records. 

All the  above  operations can be combined in an arbitrarily com- 
plex manner  to  construct a stream from a  set of bricks. 

Following are some examples of cilstrings: 

D22 brick 22 
+D22D45 union of bricks 22 and 45 
%D45C2E take second column only from brick 45 
;+D22D45=C217E select from union of 22 and 45, where column 

2 equals 7 

In all cases,  a brick is read using the  read  operation (Dl. If a 
stream  for  a simple brick is required,  the cilstring consists sim- 
ply of the brick identifier prefixed by D. 

The cost of creating a  stream  for  a  complex cilstring may be 
great, so such a stream should not be recreated if the  stream is to 
be used several times. Therefore  a command is provided in 
PRTV to  store  the  records of a  stream in a brick. The command 
accepts  a cilstring and returns a brick identifier. Another com- 
mand  is provided for  the deletion of bricks after  use. 

Character-string  data are not held directly in bricks,  but in sepa- 
rate disk areas called value  sets. Bricks contain  pointers  to  the 
value sets.  For efficiency, distinct  sets of character  data  are held 
in different value sets.  Commands are available to  create and 
destroy value sets, and the OPEN command for writing a brick 
has  a  parameter  that specifies which value  sets are  to be used. 
Numeric data  are not held  in value sets. 

The ISBL interpreter  consists of six main components. As shown the 
in Figure  4, they are  the ISBL syntax  analyzer,  directory row top end 
tines,  user function control, relational semantic  routines,  rela- 
tional file control,  and  optimizer. The top  end is implemented 



Figure 4 The top  end of P R N  is the ISBL interpreter, It has six main components, as 
shown in  the  diagram. 
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Incoming ISBL statements are analyzed by the ISBL syntax  ana- 
lyzer.  Control  statements  such  as LOGON, or the command to 
transfer  a  relation to or from the  data  base,  are  passed  to  the 
directory  routines. Calls to  user  functions are passed  to  the  user 
function  control, a small interface  routine which ensures  that  the 
required routine is properly linked and  then  translates  parameters 
and  passes  control  to  the  user  function. 

Incoming assignment statements  require calls to  the  directory to 
resolve the  names,  then to  the relational semantic  routines  to 
check  and compile the relational operations,  and finally to  the 
directory to associate  the  result of the  expression with the  target. 

The relational file control mostly translates Ism-level calls di- 
rectly to their CIL equivalents, with some checking and  conver- 
sion. However,  the command READ OPEN is presented with an 
ISBL expression  that has to be evaluated by the  rest of the com- 
piler. Similarly, WRITE CLOSE has  to call the directory  routines 
to bind the brick to  the  required  relation name. 

The optimizer  reorganizes cilstrings before  they are submitted  to 
the  bottom  end. It carries out transformations  that allow com- 
plex streams to  be more quickly evaluated.  An  example is re- 
arranging a string so that  selected  operations  are  carried  out as 
soon as possible. 

The design of the  top  end is fairly straightforward. The only 
points of special interest are the use of complex mappings be- 
tween  relations  and  storage  structures,  and  the  function of the 
optimizer. 
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The values of relations  stored in the  directory are held in rela- 
tion control  blocks, each of which has  two  parts. One part is a 
cilstring which can be passed  to  the  bottom end to  realize  a  set 
of records.  The  other part, called a domain  list, allows the  top 
end to  interpret  the  records as tuples. The domain list contains 
the  degree of the  relation,  and,  for  each  component,  the domain 
from which it is drawn and its data type. 

The  use of control blocks allows for complex mapping between 
the user’s (relational) view and the storage  (brick and stream) 
view of data. It also simplifies the implementation of defined re- 
lations, which are mappings between different user views. 

The main directory,  the  relation  index, is a mapping from the 
user’s name for a  relation to a  location containing the relation 
control block. The relational semantic  routines act only on  rela- 
tion control blocks. They accept relation control blocks as pa- 
rameters  and  use  them to check  the validity of the  operation and 
produce  a relation control block for  the  result. When an assign- 
ment is made,  operations  are  carried  out solely on  the  directo- 
ries and relation control  blocks,  not  on  the bottom-end data. 
Operations  on  bottom-end data  are only carried  out in four 
cases: when the  user lists the  relation,  when  the  user  opens  the 
relation as a relational file, when the  user  asks  for  the cardinality 
of a  relation, and when  the  user explicitly requests  that  the  rela- 
tion be  stored  as  a  brick, using the command 

KEEP <relation  name>. 

The delay in executing operations on bulk data is called deferred 
operation. 

The cilstring used in a relation control block is an extension of 
the cilstring passed to the  bottom  end. It  expresses  the binding- 
by-name capabilities of ISBL by including the  name in parenthe- 
ses. Thus  the statement A=N!B+N!C creates  the cilstring +(B)(c) 
for A.  

A set of stream  operations  often can be reorganized into  another 
set  that gives the  same  result  but  takes less time to  execute. For 
example, usually it is quicker  to make selections from two 
streams and join  the  result  than  to  join  the  streams  and  select 
from the  result. The optimization code reorganizes cilstrings 
accordingly, carrying out the reorganization on a  tree form of 
the string. 

Optimization includes the following activities: 

Filters are moved as  far  down  the  tree  as possible, causing 
the  selections  to  be  executed as early as possible. 
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Projections of projections  are merged into one  projection. 

Projections involving sorts  are moved as  far toward the  top 
of the  tree  as possible, for latest possible execution. 

Projections  not involving sorts  are moved as far  toward  the 
bottom of the  tree  as possible. 

Expressions involving several  set  operators are reorganized 
according  to  such  standard rules as commutativity  and  distri- 
bution. The sizes of the  bricks are used to optimize this  reor- 
ganization.  Estimates  are made of the  sizes of the intermedi- 
ate values. At present, no statistics are kept to help make 
these  estimates more accurate. 

A  search is made for common subtrees within the  tree.  The 
common value may be realized as  a  brick,  preventing dupli- 
cation of the  operations.  Often  the  cost of creating  a brick is 
greater  than  the  cost of repeating the  operations,  however, so 
the optimizer estimates  both  costs  and  chooses  the  cheaper 
alternative. 

The optimizer also  chooses among alternative implementa- 
tions of the relational operations. For example,  the  operation 
join can  be implemented as  either a collate or a  double 
l00p.~’  The collate is quicker  but  requires suitably sorted 
input. If the  input  data  are  not  sorted,  the optimizer chooses 
whether  to  sort and merge them or  to  use  the  double-loop 
implementation. Another  choice may be possible with selec- 
tion, which sometimes can  be implemented using indices held 
for  bricks. 

In  future,  the optimizer will handle the use  of  secondary in- 
versions  for  both  selections7  and  join^.^' s 



Figure 5 The bottom end of PRTV contains subroutines that  hondle records represent- 
ing tuples. 
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The bottom end of PRTV (see Figure 5 )  is implemented in a 
mixture of PL/I and System/370  assembler language. The follow- 
ing discussion  covers  the  format of the major data  structures- 
the brick and the value set  -and then outlines  their use in pro- 
viding CIL interface  functions. The discussion is intended not to 
give full details,  but only to outline major points. 

A brick is a stored sequential file. Techniques  that make for  the 
efficient storing and retrieving of bricks include the use of a  stan- 
dard  format, the blocking of data,  the sorting, suppression, and 
compression of data, and the  use of page indices. Records are 
stored in a  standard  format  throughout  the  bottom  end  to simpli- 
fy access and manipulation routines. Blocking is intended  to 
reduce  the number of disk  accesses. Sorting makes  the  execu- 
tion of stream  operations more efficient, and it allows for the 
suppression of duplicate leading fields. Data compression,  ap- 
plied on a field-by-field basis,  recovers  space  lost in the  some- 
times apparently  extravagant use of the  eight-byte  format. Page 
indices provide for faster  access in the major sort field. 

Partial inversions are being implemented in the form of binary 
bricks  between  the value in a given field and the identifiers of 
records containing that value. 

Blocking is designed to  save  disk  access time. The first  record 
on  each page is written in full at  the head of the page. The page 
size is chosen when a  data  base is first formatted. The remaining 
records  are  suppressed and compressed and written sequentially 
onto  the page until no more will fit. This  procedure allows from 
one  to more than 1000 records  to be stored  on  a page. 
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I Figure 6 An example  of  data  compression as carried  out  in PRW,  showing  how  the 
value 257 is compressed  against  the  value 515. 
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Permanently  stored  bricks  are always sorted.  The only bricks 
that  are not sorted  are  those  that  have just been  written by the 
CIL user.  They are always  sorted before being made  permanent. 
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Data suppression is intended to eliminate CPU and rlo time and 
storage  associated with certain  redundant  data. In each  record, 
leading fields are  suppressed if they  are identical to  the  corre- 
sponding fields of the previous record. The remaining fields are 
preceded by a value denoting the  number of fields explicitly 
held. For example,  consider a file  of degree 3:  

1 1 1  
1 1 2  I 

In this case, only the following fields would be  held: 

1 1 1  
I 2 - 
- 2 2 2  
- 3 2 1 2  

The underscored values above indicate the  number of fields. 

Compression is carried  out  as follows: The first record in each 
block is stored  complete,  but in subsequent  records, fields that 
have  not been suppressed  are  compressed against the  corre- 
sponding fields of the first record.  This is done by an  exclusive 
OR of the values in the  two  records. If the values are similar, the 
result will contain  several  zero  bytes.  A bit map indicating the 
zero  bytes is stored, followed by the  nonzero  bytes.  An  example 
is shown in Figure 6, where  the value 257 is compressed against 
the value 5 15. 

Compression is needed because of the eight-byte format. The 
technique used in PRTV was  chosen  to give good results with 
small integers and value-set indentifiers. 

Page indices are designed to provide fast  access  for  certain 
selection  operations. The  data pages of a brick are held in an 
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I value 
sets 

array, along with the  value of the first field  in the first and last 
records  on  each page. 

Relations  often  have  to hold character-string  values.  In PRTV 
these  values  are  not held  in the  stream  representation of the re- 
lations,  but  are  stored  on disk in value  sets. The stream  contains 
an identifier for  the  value.  This  system  has  the following advan- 
tages: 

records in a stream are of fixed length; 

long character strings are held only once in the  system, so 
only their identifiers are duplicated if several  bricks contain 
the  same string. 

On  the  other  hand,  the  use of value  sets has the following disad- 
vantages: 

the manipulation of character  strings is inefficient if they are 
used in only one  brick; 

stream  operations for such  functions as substring tests  are 
inefficient because they do  not  have  convenient  access  to  the 
values; 

it  is  difficult to  present  a  properly  sorted relational file unless 
the value-set identifiers are  arranged  to  sort in the  same  or- 
der  as  the strings they  represent; 

it becomes  difficult to tell when a  character string is no long- 
er in use by any  brick, and thus  to purge it from the  system. 

PRTV stores  one  value  set  for  each domain of character  data 
type  created by the user,  thereby establishing several small val- 
ue sets instead of one large one.  The advantage is speed of ac- 
cess from identifier to value and vice versa.  Having  several 
small value  sets,  however,  makes  retrospective merging of do- 
mains very  expensive,  and this operation is not  supported in 
PRTV. 

The  current PRTV value-set  scheme is based on unbalanced 
trees with implicit identifiers. This  scheme is biased toward val- 
ue-at-a-time retrieval of values from identifiers and  does  not 
maintain a helpful Sort order  of identifiers. The identifiers take 
up six bytes,  an  unnecessarily large amount of storage  that is 
often  reduced by compression.  Short values are not indirectly 
coded but are held  in the eight bytes with one  byte  reserved  for 
the length. 
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application, operations  have  to  be  carried  out on the explicit records.  These 
stream are called stream  operations. Six of them  correspond  to  the  sup- 

operations ported relational operations, one invokes tuple-at-a-time user 
extensions,  one is a  read  operation,  and  one is a sort.  Each 
works  on  a  node of a tree using input from the  subnodes. At the 
bottom of the  tree  are  the  nodes for the read operation, which 
simply reads  records  (usually  sequentially)  out of bricks. 

Figure 7 Example of a tree, TO use  the  stream  operations, a tree must be set UP first, and 
showing CIL ;+D15D22 then  the  operations  invoked. The operations  take data from the 

data  base at  the leaf nodes,  and  the  data flow up  the  tree,  the final 
result appearing at the  top (see Figure 7 ) .  

The realization of the set of tuples at  the top of a  tree is the ex- 
plication of the  tree. As the  tree is set  up,  certain  operations are 
performed to make its explication more efficient. For example, 
filters are  converted  to  forms  that  are  easier  to  apply.  Each node 
of the  tree  contains  pointers  to  subnodes, filters, and so on. 
There is also  space  for  the  current  record. 

In most cases,  stream  operations  take  sorted input and develop 
sorted  output, making it unnecessary to fully realize the inter- 
mediate streams  that  are passed from one  node to another.  Rec- 
ords then can be passed up the  tree  a few at  a time, as requested 
by the  upper  node. PRTV does this whenever possible. 

Sometimes  intermediate  streams  do  have  to be fully realized and 
stored,  as in a  reorder, which does  not necessarily produce  sort- 
ed output. The output must be fully worked  out  and  sorted  be- 
fore  any  records  are passed up the  tree. A node  where  an inter- 
mediate stream  must be explicated is called a break  point of a 
tree. 

=ClCJE. 

= ClC3E 

The  code  that  carries  out  the  conversion from CIL to  tree is 
quite  straightforward, as is that which carries  out  the  stream 
operations. No details  are included here. 

basic The simplest bottom-end operation is writing a brick. The OPEN 
operations command creates  a  control block which is used to identify the 

of the brick being written. As each  record is entered, it  is translated 
bottom  end using value-set conversion  for  characters.  This  procedure  puts it 

into  the  standard form for writing a  brick. The brick is sorted, if 
necessary, when writing is closed. 

Reading a  stream and converting  a  stream  to a brick require  the 
building of a tree. In reading, the  tree is built when the stream is 
opened. The records  are explicated using the tree,  then  trans- 
lated to  user  format  before being passed out of the bottom end. 
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When a  stream is converted  to  a  brick,  the explicated records 
simply are  written  to  the brick without the need for value set 
translation. 

PRTV background 

PRTV is based  on  the  concise, formal definition of relations pro- 
posed by Hall,  Hitchcock, and Todd.3  It is from that definition 
that  the  terms selector and component, as used in this paper, are 
taken. The definition proposed by Hall  et  al.  solves problems of 
role names and domain name inheritance  discussed by Codd’ 
and clears  up  the confusion resulting from his use of domain for 
both underlying set  and  component of a  relation. 

Two  other features of PRTV were  discussed by Hall et al. The 
use of a relation as  the  graph of a  procedure is the basis of the 
tuple-at-a-time extension; and the equijoin and generalized dif- 
ference  operations are based on operations  described by Hall et 
al. These operations are more convenient  than  the  operations 
used in most forms of the relational algebra. 

The use of normal forms is discussed by Codd.” PRTV under- 
stands tuple elements only as  atomic  objects; it  is possible for  a 
general extension  to  use  objects  as relation names and thus  to 
simulate a violation of first normal form.  A  system  cannot  check 
for third normal form,  as  that form is only an intensional property. 
It is recommended that  users of PRTV keep their relations in 
third normal form in most cases. 

The optimization carried  out by PRTV was first suggested by 
M. G. Notley, but the  details  are  the work of Hall.’ Similar ideas 
have been proposed by Smith and  Chang.” 

Work of an entirely different nature on optimization of relational 
expressions has been  done by Astrahan and Chamberl i~~,~ who 
considered using inversions to optimize a smaller class of que- 
ries. It is hoped to include some of the  results of their work in 
PRTV. 

Current  work at Peterlee is being directed  toward optimization 
on the  data-base  scale  rather than on the  scale of a single query.” 
This optimization will not be entirely automatic;  a  data-base 
administrator  interface is anticipated.  Commands through the 
interface will affect only the efficiency of queries and programs, 
not the  results  obtained. 

There  are no particularly novel features in the file structures of 
PRTV. The implementation of bricks is much more conventional 
than the  structures used in many “relational”  access methods.13 
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PRTV provides convenient  exits so a user  or system  administra- extensibility 
tor  can  extend  the  function of the  system.  Extensions  can make 
use of both relational views and more conventional  sequential- 

I file views of data. PRTV’S extensibility enables the  system  to be 
used in a wide range of data-base applications. 

PRTV does  not  try  to  imitate  the relational view of data directly a multilevel 
at  the  storage level, and  there is not a simple correspondence system 
between relations and  the  stored files. Therefore  the  system  can 
be implemented using efficient  filing techniques  such  as  sorting, 
compression, and indexing, without burdening the  user with 
storage  details. 

Optimizing-compiler techniques aid  in the efficient execution of optimization 
apparently complex operations. Thus  the  user need not specify 
an especially efficient solution to his problem, but  rather  a  con- 
venient  and  readable  one.  Associated with the flexible file struc- 
tures in PRTV is the  use of trees  to  represent  particular combina- 
tions of structures.  The trees  drive  the explication of entire  sets 
of tuples, so decisions  on  access  paths  can  be made at  a  late 
stage, and optimization is based  on  the  best  data. At  the  same 
time, the  use of trees  reduces  the  number of decisions  to be 
made as  each  record is processed. 
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