
RECENT INVESTIGATIONS IN RELATIONAL DATA BASE SYSTEMS

E. F. Codd
IBM Research Laboratory

Monterey and Cottle Roads
San Jose, California 95193

(408) 256-7648

The objectives and characteristics of the relational approach to the management of large
formatted and integrated data bases are briefly reviewed. We then consider recent
advances in the following topics: normalization of the relational model; data base
sublanguages for programmers and non-programmers; the problem of superimposition of
multiple views on top of the relational model; and data exchange policies in a network
of mutually remote data bases. Listed in the conclusion are some areas of investigation
in relational technology requiring immediate attack and some that are less urgent.

Disclaimer: The opinions expressed in this paper
are not necessarily those of IBM.

1. OBJECTIVES

In 1968 it was possible to observe two mutually
incompatible trends in formatted data base systems:
on the one hand, the tendency of systems designers
to expose users of their systems to more and more
complicated types of data structure and, on the
other hand, the increasing interest in establishing
integrated data bases with a much higher degree of
data inter-relatedness and on-line interactive use
by non-programmers. At about the same time, it
was becoming clear that users were spending too
much in manpower and money on re-codlng and
re-testing application programs which had previously
worked satisfactorily but which had become logically
impaired by data base growth or by changes in the
stored data representation for various reasons (the
so-called data independence problem).

In a series of papers [1-5] we proposed a specific
relational model with (we believe) a novel set of
operators and normal forms. For prior applications
of relations, see references cited in [1,2]. The
objectives of this work are:

I. to provide a high degree of data
independence;

2. to provide a community view of the data
of spartan simplicity, so that a wide
variety of users in an enterprise (ranging
from the most computer-naive to the most
computer-sophisticated) can interact with
a common model (while not prohibiting
superimposed user views for specialized
purposes);

3. to simplify the potentially formidable
job of the data base administrator;

4. to introduce a theoretical foundation
(albeit modest) into data base management
(a field sadly lacking in solid principles
and guidelines);

5. to merge the fact retrieval and file
management fields in preparation for the
addition at a later time of inferential
services in the commercial world;

6. to lift data-based application programming
to a new level -- a level in which sets
(and more specifically relations) are
treated as operands instead of being
processed element by element.

In connection with the second objective, it is
important to remember that data bases are being
established for the benefit of end users, and not

for the application programmers who act as
middle-men for today's data processing needs. Fig.
i displays the author's somewhat conservative
assumptions about future trends in data base
interaction. For a description of the casual user
and a subsystem to support his interaction, see
[6].

Mid
'70S

'90s

Fig. 1 Anticipated Use of Large Integrated Data Bases

2. RELATIONAL MODEL

In the relational approach there exists an interface
at which the totality of formatted data in a data
base can be viewed as a finite collection of

non-hierarchic relations of assorted degrees defined
on a given collection of simple domains (domains
whose elements are non-decomposable as far as the

15

data base management system is concerned). The
extension (or instantaneous value) of each relation
of degree n is a simple table with n columns and
no duplicate rows. Accordingly, within each
relation each tuple (or row) is uniquely
identifiable by its content alone.

The extension is, of course, subject to change with
time as tuples are inserted, modified, and
deleted. While there is no prohibition against
ordering the tuples of any relation in the user's
view, there is a clear advantage in requiring that
such an ordering be entirely re-constructible from
the table values, since it is then possible to
derive and retrieve every meaningful relation by
application of a simple collection of commands
(e.g., the operators of the n-ary relational
algebra), without programming a tuple-by-tuple
search.

The intension (or meaning) is much less subject to
change than the extension -- and for many purposes
can be treated as if it were time-independent. We
include in the intensional part of the relational
model the declaration of domains and relations,
units and range information for each domain,
information as to the applicability of comparisons
based on LESS THAN, together with a list of all
the integrity constraints. These constraints may
be represented by procedures, by parameters for
procedures, or, in some cases, by query language
expressions [18].

We may divide the constraints into two types: those
that define valid states of the data (we call these
static integrity constraints) and those that define
side-effects of various kinds of transactions,
particularly insertions and deletions (d~namic
integrit[constraints). The static integrity
constraints include all of the elementary functional
dependencies upon which the normal forms are based
[3,4,11], plus designations of primary keys. Also
included in the static constraints are set inclusion
declarations (for example, the set of suppliers
who are supplying parts must be a subset of the
set of suppliers in the supplier-describing
relation).

An important and distinctive feature of the
relational model is the separation of integrity
and security constraints from the logical data
structure. We may accordingly change the
constraints without changing the data structure
and possibly impacting application programs and
terminal activities.

A variety of representations can be used for storing
the data, so long as these representations are
isomorphic to the relational model with respect to
insertion, update, and deletion. The application
programs, of course, do not refer to the storage
representations directly. They are written to
operate upon the community view or some superimposed
specialized view (see section 5 below).

The fundamental differences between the data base
relational model and the network model (as
exemplified by DBTG [23] are discussed in [7,8].

3. NORMALIZATION OF RELATIONS

In [3,4] six aims of normalization of relations
are listed. Perhaps the two most important are:

16

i. To reduce the need for restructuring the
collection of relations as new types of
data are introduced, and thus increase
the life span of application programs;

2. To reduce the incidence of undesirable
insertion, update, and deletion anomalies.

The concepts of full and transitive dependence of
attributes upon one another were introduced, and
the second and third normal forms were defined.

In [12] Kent proposed improvements to the
definitions of the second and third normal forms.
These improvements remove the somewhat arbitrary
distinction drawn in [3,4] between prime and
non-prime attributes. More recently, Boyce and
Codd developed the following definition:

A relation R is in third normal form if it is
in first normal form and, for every attribute
collection C of R, if any attribute not in C
is functionally dependent on C, then all
attributes in R are functionally dependent on

C.

While this definition is logically equivalent to
that of Kent, it has the advantage of avoiding
reference to the concepts of primary key, full
dependence, and transitive dependence. As a
consequence, the normalizing algorithm is

significantly simplified.

Now, even though each relation in a collection of
relations may be in third normal form, it does not
follow that the collection itself is in optimal
third normal form. For example, consider the
collection consisting of two relations R(~,B) and
S(A,C), where in each case the primary key is
underlined as usual. Suppose R is non-loss joinable
with S on A. The join T of R with S on A clearly
possesses the functional dependencies of B on A
and C on A, but it might also possess the dependency
of C on B. Let us suppose it does have this
additional dependency. Then, the given collection
of relations can be replaced by the more optimal
collection consisting of the projection T(_B,C)
together with the relation R. This example shows
the need to consider not only the functional
dependencies within the given relations but also
the dependencies within all the non-loss joins of
these relations, when attempting to cast a given
collection in optima] third normal form.

4. DATA SUBLANGUAGES

For expository purposes, we shall distinguish five
kinds of language, all of which provide independence
of programs and terminal activities from the
physical (or stored) representation of the data.
These kinds are: element-by-element; algebraic;
mapping-oriented; relational calculus; and natural
language (e.g., English).

4. i Element-by-Element Data Sublan~uageS

A primitive procedural interface for
element-by-element manipulation of a collection of
n-ary relations is described in detail in [13].
The 14 basic commands provide for the creation and
dropping of relations, the insertion, modification,
movement, and deletion of tuples, the retrieval of
tuples via system-generated identifiers, and
relation-scanning operations that permit some degree
of optimization of search in the implementation.
The creation and dropping of inversions are under

programmer control at this level, because this
interface is intended to be used to interpret higher
level data sublanguages efficiently. Maintenance
of these inversions is, however, a system
responsibility, since it can be handled more
efficiently below this interface than above it.

Generally speaking, when making a query on a remote
data base, one would prefer not to have to request
elements one at a time in a low level language.
This is one of the reasons for investigating the
following data sublanguages.

4.2 Alsebraic Data Sublanguages

At the algebraic level, retrieval of data is viewed
as the formation of a new relation from the data
base relations by use of some operation of the
algebra. It should be stressed that these
operations act upon entire relations as their
operands. As pointed out in [5,14] these operations
provide a powerful and concise vehicle for
expressing queries, and they are comparatively easy
to implement efficiently in the context of the
relational model. Unfortunately, these operators
cannot be readily implemented in the CODASYL DBTG
framework, because its owner-coupled set occurrences
do not behave as mathematical sets [7].

Examples of implementations of the algebraic level
interface on the relational model are found in
MACAIMS [15], RDMS [28], and the Peterlee IS/I
[16]. The last system has an interesting variant
of the join operator, one that is oriented both to
convenience of use and efficiency of implementation.

4.3 Mapping-Oriented Data a Sublanguages

Every binary relation R (no matter whether it is
one-many, many-one, or many-many) can be regarded
as a set-valued function Which maps each element
of the first domain of R into the set of all
associated elements in the second domain. There
is also a similarly defined function that maps
elements in the second domain into sets of elements
in the first. This idea can obviously be extended
to relations of higher degree. Boyce, Chamberlin,
King, and Hammer have developed a relationally
complete data sublanguage [17] based on this notion.
An English-oriented version of this sublanguage
named SEQUEL [18,]9] appears to be a strong
candidate for use by both programmers and
non-programmers who are willing to tolerate a small
amount of training.

4.4 Relational Calculus Data Sublanguages

A data sublanguage named ALPHA based on the
relational calculus for non-hierarchic n-ary
relations was described in [2], its foundation was
defined in [5], and a syntax was specified in [6].
Tactics for efficient interpretation were introduced
in [20] by Palermo, and are also discussed in [21]
by Rothnie. In each case a small scale experimental
implementation was developed.

The relational calculus type of interface has the
advantage that the user specifies what he wants
and avoids specifying how tbe system should retrieve
the information, thus leaving the system with the
complete responsibility for searching efficiency.
Another advantage is its conciseness. In [29]
Frank and Sibley (selecting their own example)
developed a DBTG schema for a sample data base,
together with a subschema and COBOL-DBTG program

i?

for a sample application. In [7] we show that
conversion of the DBTG schema to a relational schema
results in an 80 percent reduction in the number
of lines of code for the schema itself; and
conversion of the COBOL-DBTG program to a
corresponding COBOL-ALPHA program results in a 90
percent reduction in the number of lines of code
for the application.

4.5 Natural Language for Non-Programmers

By natural language (in this paper) we mean any
language in use today for oral conversation between
people, providing it has tokens that are acceptable
to computers. We shall use English as an example.
Much work has been done in developing translators
and interpreters for queries stated in English.
Almost all of these systems provide one-way
translation only (from English to some
computer-oriented language). The REL system [26]
at the California Institute of Technology and the
CONVERSE system [27] at System Development
Corporation in Santa Monica are examples. Such
systems are based on the (unstated) assumption that
the user knows what he wants and knows how to
express his needs perfectly in system-comprehensible
English. This assumption may be viable for analysts
and researchers who have a clear job-incentive to
learn to live with the system's restrictions. Such
a learning overhead with the patience it implies
is incompatible with casual interaction by
non-programmers.

In [6] the author proposed seven steps to arrive
at viable support for casual interaction. These

steps are:

I. Select a simple data model
2. Select a high level logic as internal

target
3. Introduce clarification dialog of bounded

scope
4. Introduce system re-statement of user's

query
5. Separate query formulation from data base

search
6. Employ multiple choice interrogation as

fall-back
7. Provide a definitional capability.

The author is implementing an experimental query
formulation subsystem called RENDEZVOUS that
embodies these seven steps (see Fig. 2).

5. SUPERIMPOSITION OF MULTIPLE VIEWS

Both Guide-Share [22] and the CODASYL Data Base
Task Group [23] call for multiple views of the
data, so that different application programs can
interact with distinct views. Date and Hopewell
[9,10] are more specific on this topic. None of
these reports places clear limits on the range of
application views that are permissible or required
for a given system logical view (or community
schema). For application programs that do more
than merely read the data, there are theoretical
limitations which must be observed if data base
integrity (including consistency of all permitted
views) is to be maintained.

To illustrate the kind of difficulty one encounters,
suppose that the community schema includes two
relations R(A,B) and S(B,C). Suppose that a user
requests T(A,B,C) as his schema, where T is defined
to be the natural join of R with S on the common

USER

, j ,

l D I A L O G
CONTROL

A N A L Y Z E R T J

I "I

~ 2

SYNTHESIZER

1. User makes initial statement of his query (unrestricted English)

2. System interrogates userabout his query (to obtain information
which is missing or hidden in language the system does not
understand, and to resolve ambiguities)

3. User responds to system interrogation

4. System provides a re-statement of user's query in system
English (in a very precise way, based on the n-ary relational
calculus)

to the relations R and S, whereas R and S together
are deletion-viable with respect to T).

Insertion viability can be defined analogously to
deletion viability. If we assume, as usual, that
primary keys may not have undefined values whereas
other attributes may, deletion viability of schema
U with respect to schema V does not imply insertion
viability (consider the case in which U is a
projection of a relation R in schema V on non-key
attributes of R). On the other hand, in the absence
of dynamic integrity constraints triggered by
deletion operations, insertion viability does imply
deletion viability.

There has been much discussion [9,18] of supporting
tree structured schemata on top of the relational
model. The join operation is a vital part (but
not the whole story) in the formation of tree
structures from non-hierarchic relations. Thus,
the problem of supporting tree structures with
integrity must take into account the problem of
supporting joins with integrity. A systematic
investigation is needed to determine for any given
class of non-hierarchic relations and associated
integrity constraints what is the class of user
views that can be supported with integrity.

Fig. 2 RENDEZVOUS Subsystem

attribute B. Further, suppose that at some instant
R and S have the following tabulations:

R (A B) S (B C)
s i i u

t i i v
.

Then, the tabulation of T must be:

r (ABC)
s i u
s iv
t I u
t iv
. . ° ° .

Now, suppose the user who has T in his schema
desires to delete just one row -- specifically,
the triple (t,l,v). If he were allowed to do this,
the relation T would become a relation that is not
the join of any pair of relations whatsoever.
Another way of expressing this is that there is no
way of reflecting this deletion from T by means of
corresponding deletions from R and S. In [i] we
called the element 1 in domain B a ~oint of
ambiguity in the join of R with S on B. A simple
and sufficient time-independent condition under
which a point of ambiguity cannot arise is that
either A is functionally dependent on B in R or C
is functionally dependent on B in S.

Informally, we shall say that schema U is
deletion-viable with respect to schema V if all
deletions from tabulations of U can be faithfully
simulated by deletions from corresponding
tabulations of V. Of course, all applicable
functional dependencies must be respected. It is
not difficult to make this definition more formal.
If U is deletion-viable with respect to V, this
does not imply that V is deletion-viable with
respect to U (consider the case cited above, in
which the join T is not deletion-viable with respect

6. DATA EXCHANGE

Consider a network of computers with one or more
data bases at each node. Suppose a common
requirement is that of transmitting collections of
formatted data from one node to another. Let us
focus upon the question of how these data
collections are represented in storage at each node
and how they are represented on the communication
lines (ignoring, however, the representation of
atomic items).

There are four principal policies that can be
adopted to ensure that a collection transmitted
from one node is acceptable and interpretable at
the receiving node. The first policy is a very
rigid one, namely that all nodes are required to
use the same data base management system. This
guarantees compatibility, but has the disadvantage
that no node may make improvements or changes in
the class of data representations supported by
their node without all other nodes simultaneously
introducing the very same changes.

The second policy is the opposite extreme, namely
that of permitting free choice at each node of the
stored data representations used at that node and
also on the communication lines. It is then the
responsibility of any two parties that want to
communicate with one another to develop the
necessary translation programs to make their
bilateral communication possible. The disadvantage
of this approach is that many such programs will
become necessary sooner or later.

The third policy is that of developing a single
"general" translator to replace the bilateral
translators of the second policy. An identical
copy of this network standard translator would be
mandatory at each node. As Dennis has shown [24],
there is no truly general translator that can handle
all possible data representations. Thus, we must
ask: "What happens if a new (and possibly very
efficient) physical representation and access method
are discovered which are beyond the capability of
the standard translator?". Remember that we are
only just beginning to establish a theoretical

18

basis for physical representations of data, and
therefore we can expect significant new developments
in this area. The third policy would have a marked
deterrent effect upon the introduction of a new
data representation at some node, because of the
need to obtain the consent of all other nodes to
the required modification of the network standard
translator.

The fourth policy is that of adopting a single
network standard data representation for
communication purposes (as proposed in [i], page
381). No constraints are placed upon the stored
data representations adopted at any node. The only
requirement is that each node develop its own
translator to and from the standard communication
representation for whatever stored representations
are adopted at that node. Thus, changes in the
stored representations at any node can be made
without negotiation with other nodes. Third normal
form relations [3] provide a rather simple basis
for such a data communication standard within a
network. One group that is investigating this
approach is at the University of Michigan [25].

7. NEEDED INVESTIGATIONS

In this author's opinion, the most urgently needed
investigations are:

i. development of concurrency control
techniques specifically geared to the
relational model;

2. ascertaining the performance that is
attainable when the relational approach
is applied to a large scale data base (at
least one billion bytes) with concurrent
access and modification;

3. development of superimposition theory (see
section 5 above);

4. development of storage, access, and
modification theory for collections of
non-hierarchic n-ary relations;

5. demonstration of viability of natural
language query formulation subsystems of
the RENDEZVOUS type.

Inferential services and support for Zadeh-fuzzy
concepts represent less urgently needed, but still
necessary, areas of investigation.

ACKNOWLEDGMENT

It is a pleasure to acknowledge the author's
indebtedness to C. T. Davies of IBM (the need for
data independence), A. L. Strnad and R. C. Goldstein
of MIT (the first implementation of a data
independent, relational data base system with truly
n-ary relational operators), C. J. Bell, M. G.
Notley, T. W. Rogers of IBM Peterlee, England (the
first IBM implementation), C. J. Date, P. Hopewell,
I. J. Heath of IBM Hursley, England (contributions
to data independent system architecture and
normalization theory, plus exposition in Europe),
R. F. Boyce, D. D. Chamberlin, W. F. King, F. P.
Palermo, I. L. Traiger of IBM San Jose (discussions
on normalization improvements, superimposition of
multiple views, and concurrency control). The
author is also indebted to the many correspondents,
particularly in universities, who have shown a
strong interest in this approach.

REFERENCES

[i] E. F. Codd, "A Relational Model of Data for
Large Shared Data Banks", Comm. ACM, Vol. 13,
No. 6, June 1970, pp. 377-387.

[2] E. F. Codd, "A Data Base Sublanguage founded
on the Relational Calculus", Proe. 1971
ACM-SIGFIDET Workshop*.

[3] E. F. Codd, "Further Normalization of the Data
Base Relational Model", Courant Computer Science
Symposia ~, "Data Base Systems", New York City,
May 24-25, 1971, Prentice-Hall.

[4] E. F. Codd, "Normalized Data Base Structure:
A Brief Tutorial", Proc. 1971 ACM-SIGFIDET
Workshop*.

[5] E. F. Codd, "Relational Completeness of Data
Base Sublanguages", Courant Computer Science
Symposia ~, "Data Base Systems", New York City,
May 24-25, 1971, Prentice Pall.

[6] E. F. Codd, "Seven Steps to Rendezvous with
the Casual User", Proc. IFIP TC-2 Working
Conference on Data Base Management Systems,
Cargese, Corsica, April 1-5, 1974,
North-Polland.

[7] E. F. Codd, C. J. Date, "Interactive Support
for Non-Programmers: The Relational and Network
Approaches", Proc. 1974 ACM-SIGFIDET Workshop*.

E8] C. J. Date, E. F. Codd, "The Relational and
Network Approaches: Comparison of the
Application Programming Interfaces", Proc. 1974
ACM-SIGFIDET Workshop*.

[9] C. J. Date, P. Hopewell, "File Definition and
Logical Data Independence", Proc. 1971
ACM-SIGFIDET Workshop*.

[10]C. J. Date, P. Hopewell, "Storage Structure
and Physical Data Independence", Proc. 1971
ACM-SIGFIDET Workshop*.

[Ii]I. J. Heath, "Unacceptable File Operations in
a Relational Data Base", Proc. 1971 ACM-SIGFIDET
Workshop*.

[12]W. Kent, "A Primer of Normal Forms", IBM System
Development Division, San Jose, California:
Technical Report TR02.600 December 17, 1973.

[13]D. Bjorner, E. F. Codd, K. L. Deckert, I. L.
Traiger, "The Gamma Zero n-ary Relational Data
Base Interface: Specifications of Objects and
Operations", IBM San Jose Research Report
RJI200, April Ii, 1973.

[14]A. L. Strnad, "The Relational Approach to the
Management of Data Bases", Information
Processing 71, North-Holland Publishing Company,
Amsterdam 1972, pp. 901-904.

[15JR. C. Goldstein, A. L. Strnad, "The MACAIMS Data
Management System", Proc. 1970 ACM-SIGFIDET
Workshop*.

[16]M. G~ Notley, "The Peterlee IS/I System", IBM
UK Scientific Centre Report UKSC-0018, March
1972.

19

[17]R. F. Boyce, D. D. Chamberlin, W. F. King III,
M. M. Hammer, "Specifying Queries as Relational
Expressions: SQUARE", Proc. ACM SIGPLAN-SIGIR
Interface Meeting, Gaithersburg, Maryland,
November 4-6, 1973.

[18]R. F. Boyce, D. D. Chamberlin, "Using a
Structured English Query Language as a Data
Definition Facility", IBM San Jose Research
Report RJI318, December i0, 1973.

[19]D. D. Chamherlin, R. F. Boyce, "SEQUEL: A
Structured English Query Language", Proc.
ACM-SIGFIDET Workshop*.

[20]F. P. Palermo, "A Data Base Search Problem",
Fourth International Symposium on Computer and
Information Science, Miami Beach, December 1972
Academic Press.

[21]J. B. Rothnie, "The Design of Generalized Data
Management Systems", Ph.D. Dissertation, Dept.
of Civil Engineering, MIT, September 1972.

[22]Joint GUIDE-SHARE, "Data Base Management System
Requirements", Guide or Share Distribution,
November 1970.

[23]CODASYL, "Data Base Task Group Report", ACM,
New York, 1971.

[24]J. B. Dennis, "On the Exchange of Information",
Proc. 1970 ACM-SIGFIDET Workshop*.

[25]Sham Navathe, "Logical Normal Forms for Data
Translation", Private Communication.

[26]F. P. Thompson, P. C. Lockemann, B. H. Dostert,
R. Deverill, "REL: A Rapidly Extensible
Language System", Proc. 24th ACM National
Conference, New York, ACM 1969, pp. 399-417.

[27]C. H. Kellogg, J. Burger, T. Diller, K. Fogt,
"The CONVERSE Natural Language Data Management
System: Current Status and Plans", Proc. ACM
Symposium on Information Storage and Retrieval,
Univ. of Maryland, College Park, 1971, pp.
33-46.

[28]V. K. M. Whitney, "RDMS: A Relational Data
Management System", Proc. Fourth International
Symposium on Computer and Information Sciences,
Miami Beach, Florida, December 14-16, 1972
Academic Press.

[29]R. L. Frank, E. H. Sibley, "The Data Base Task
Group Report: An Illustrative Example", ISDOS
Working Paper No. 71, February 1973, U.S.
National Technical Information Service, Document
AD-759-267.

* Proceedings of ACM-SIGFIDET Workshops on Data
Description, Access, and Control are obtainable
from ACM, New York.

[30]C. J. Date, "An Introduction to Data Base
Systems", Addison-Wesley, 1975.

[31]M. Stonebraker, E. Wong, "Access Control in a
Relational Data Base Management System by Query
Modification", Electronics Research Lab., Univ.
of California, Berkeley, ERL-M438, May 14,
1974.

[3211. T. Hawryszkiewycz, "Semantics of Data Base
Systems", MIT Project MAC, Cambridge, Mass.,
MAC TR-II2, December 1973.

[33]M. Zloof, "Query by Example", IBM Yorktown
Heights Research Reports RC4917, RC5115, July
2, 1974.

[34]C. Delobel, "La Structure de l'Information dans
une Base de Donnee", Revue Informatique et
Recherche Operationnelle MbB3, 1971, pp. 37-64.

[35]J. Rissanen, C. Delobel, "Decomposition of
Files, A Basis for Data Storage and Retrieval",
IBM San Jose Research Report RJI220, May i0,
1973.

[36]C. Delobel, R. G. Casey, "Decomposition of a
Data Base and the Theory of Boolean Switching
Functions", IBM J. Res. & Develop., vol. 17,
no. 5, Sept. 1973, pp. 374-386.

[37]W. W. Armstrong, "Dependency Structures of Data
Base Relationships", Information Processing
74, North-Holland, pp. 580-583.

Reprinted by kind permission of North-Holland,
Amsterdam.

20

